Wedding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10427   Accepted: 3170   Special Judge

Description

Up to thirty couples will attend a wedding feast, at which they will be seated on either side of a long table. The bride and groom sit at one end, opposite each other, and the bride wears an elaborate headdress that keeps her from seeing people on the same side as her. It is considered bad luck to have a husband and wife seated on the same side of the table. Additionally, there are several pairs of people conducting adulterous relationships (both different-sex and same-sex relationships are possible), and it is bad luck for the bride to see both members of such a pair. Your job is to arrange people at the table so as to avoid any bad luck.

Input

The input consists of a number of test cases, followed by a line containing 0 0. Each test case gives n, the number of couples, followed by the number of adulterous pairs, followed by the pairs, in the form "4h 2w" (husband from couple 4, wife from couple 2), or "10w 4w", or "3h 1h". Couples are numbered from 0 to n - 1 with the bride and groom being 0w and 0h.

Output

For each case, output a single line containing a list of the people that should be seated on the same side as the bride. If there are several solutions, any one will do. If there is no solution, output a line containing "bad luck".

Sample Input

10 6
3h 7h
5w 3w
7h 6w
8w 3w
7h 3w
2w 5h
0 0

Sample Output

1h 2h 3w 4h 5h 6h 7h 8h 9h

题目链接:POJ 3648

题目讲的不是很清楚,实际上如下图所示

其中0号新婚夫妻是固定的了即0w在左0h在右,这题我是先把每一个夫妻拆成妻子和丈夫,然后两者均有两种状态,妻子在左或右,丈夫在左或右,因此可以拆成4*N个点,然后记在左符号为无,在右为$\lnot$,建图后跑2-SAT,首先由于固定的0号夫妻,因此0w在左、0h在右的情况必选,根据离散数学的公式可以得到有向边$<\lnot 0w, 0w>与<0h, \lnot 0h>$,然后然后任意一对夫妻不能坐在同一侧,有:$\lnot (a \land b) \land \lnot (\lnot a \land \lnot b)$,这样得到四条有向边:$<a,\lnot b><b, \lnot a><\lnot a, b><\lnot b, a>$

再然后根据每一对通奸的a与b,显然a与b不能同时出现在0w的右侧,即$\lnot (\lnot a \land \lnot b)=a \lor b$,因此得到两条有向边$<\lnot a, b>$与$<\lnot b, a>$,建图跑2-SAT后由于0w必选,因此mark[0w]是为1的,又由于mark为1的点在方案内,因此把mark为1的点都选出来并判断输出即可。

DFS输出最小字典序方案的代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen("name","r",stdin)
#define fout(name) freopen("name","w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 35 << 2;
const int M = 60 * 60 * 2 + 2 + 4 * 35;
struct edge
{
int to, nxt;
edge() {}
edge(int _to, int _nxt): to(_to), nxt(_nxt) {}
};
edge E[M];
int head[N], tot;
int st[N], top;
int vis[N];
int n, m; void init()
{
CLR(head, -1);
tot = 0;
CLR(vis, 0);
}
inline void add(int s, int t)
{
E[tot] = edge(t, head[s]);
head[s] = tot++;
}
int rev(int i)
{
return i ^ 1;
}
int dfs(int u)
{
if (vis[rev(u)])
return 0;
if (vis[u])
return 1;
vis[u] = 1;
st[top++] = u;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (!dfs(v))
return 0;
}
return 1;
}
int check(int n)
{
for (int i = 0; i < (n << 1); i += 2)
{
top = 0;
if (!vis[i] && !vis[rev(i)] && !dfs(i))
{
while (top)
vis[st[--top]] = 0;
if (!dfs(rev(i)))
return 0;
}
}
return 1;
} int main(void)
{
int i;
while (~scanf("%d%d", &n, &m) && (n || m))
{
init();
add(rev(0 << 2), 0 << 2);
add((0 << 2) + 2, rev((0 << 2) + 2));
for (i = 1; i < n; ++i) //4n
{
add(4 * i, rev(4 * i + 2));
add(4 * i + 2, rev(4 * i));
add(rev(4 * i), 4 * i + 2);
add(rev(4 * i + 2), 4 * i);
}
int u, v;
char su, sv;
for (i = 0; i < m; ++i) //2m
{
scanf(" %d%c %d%c", &u, &su, &v, &sv);
u <<= 2;
v <<= 2;
if (su == 'h')
u += 2;
if (sv == 'h')
v += 2;
add(rev(u), v);
add(rev(v), u);
}
if (!check(n << 1))
puts("bad luck");
else
{
for (int i = 4; i < (n << 2); i += 4)
printf("%d%c ", i >> 2, vis[i] ? 'w' : 'h');
puts("");
}
}
return 0;
}

Tarjan代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen("name","r",stdin)
#define fout(name) freopen("name","w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 35 << 2;
const int M = 60 * 60 * 2 + 2 + 4 * 35;
struct edge
{
int to, nxt;
edge() {}
edge(int _to, int _nxt): to(_to), nxt(_nxt) {}
};
edge E[M];
int head[N], tot;
int dfn[N], low[N], belong[N], st[N], top, ts, sc;
int ins[N];
int n, m; void init()
{
CLR(head, -1);
tot = 0;
CLR(dfn, 0);
CLR(low, 0);
CLR(belong, 0);
top = ts = sc = 0;
}
inline void add(int s, int t)
{
E[tot] = edge(t, head[s]);
head[s] = tot++;
}
int rev(int i)
{
return i ^ 1;
}
void scc(int u)
{
dfn[u] = low[u] = ++ts;
ins[u] = 1;
st[top++] = u;
int i, v;
for (i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (!dfn[v])
{
scc(v);
low[u] = min(low[u], low[v]);
}
else if (ins[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u])
{
++sc;
do
{
v = st[--top];
ins[v] = 0;
belong[v] = sc;
} while (u != v);
}
}
int main(void)
{
int i;
while (~scanf("%d%d", &n, &m) && (n || m))
{
init();
add(rev(0 << 2), 0 << 2);
add((0 << 2) + 2, rev((0 << 2) + 2));
for (i = 1; i < n; ++i) //4n
{
add(4 * i, rev(4 * i + 2));
add(4 * i + 2, rev(4 * i));
add(rev(4 * i), 4 * i + 2);
add(rev(4 * i + 2), 4 * i);
}
int u, v;
char su, sv;
for (i = 0; i < m; ++i) //2m
{
scanf(" %d%c %d%c", &u, &su, &v, &sv);
u <<= 2;
v <<= 2;
if (su == 'h')
u += 2;
if (sv == 'h')
v += 2;
add(rev(u), v);
add(rev(v), u);
}
for (i = 0; i < (n << 2); ++i)
if (!dfn[i])
scc(i);
int flag = 1;
for (i = 0; i < (n << 2) && flag; i += 2)
if (belong[i] == belong[i ^ 1])
flag = 0;
if (!flag)
puts("bad luck");
else
{
for (int i = 4; i < (n << 2); i += 4)
printf("%d%c ", i >> 2, belong[i] < belong[i ^ 1] ? 'w' : 'h');
puts("");
}
}
return 0;
}

POJ 3648 Wedding(2-SAT的模型运用+DFS | Tarjan)的更多相关文章

  1. poj 3648 Wedding 2-SAT问题入门题目

    Description Up to thirty couples will attend a wedding feast, at which they will be seated on either ...

  2. POJ 3648 Wedding (2-SAT,经典)

    题意:新郎和新娘结婚,来了n-1对夫妻,这些夫妻包括新郎之间有通奸关系(包括男女,男男,女女),我们的目地是为了满足新娘,新娘对面不能坐着一对夫妻,也不能坐着有任何通奸关系的人,另外新郎一定要坐新娘对 ...

  3. POJ 3648 Wedding

    2-SAT,直接选择新娘一侧的比较难做,所以处理的时候选择新郎一侧的,最后反着输出就可以. A和B通奸的话,就建边 A->B'以及B->A’,表示 A在新郎一侧的话,B一定不在:B在新郎一 ...

  4. POJ.3648.Wedding(2-SAT)

    题目链接 题意看这吧..https://www.cnblogs.com/wenruo/p/5885948.html \(Solution\) 每对夫妇只能有一个坐在新娘这一边,这正符合2-SAT初始状 ...

  5. POJ - 3648 Wedding (2-SAT 输出解决方案)

    题意:有N-1对夫妇和1对新郎新娘要出席婚礼,这N对人要坐在走廊两侧.要求每对夫妇要坐在不同侧.有M对人有通奸关系,对于这一对人,不能同时坐在新娘对面(新娘新郎也可能和别人有通奸关系).求如何避免冲突 ...

  6. poj 3648 Wedding【2-SAT+tarjan+拓扑】

    看错题*n,注意是输出新娘这边的-- 按2-SAT规则连互斥的边,然后注意连一条(1,1+n)表示新娘必选 然后输出color[belong[i]]==color[belong[1+n(新娘)]]的点 ...

  7. POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

    任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total ...

  8. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  9. 【POJ】3648 Wedding

    http://poj.org/problem?id=3648 题意:n对人(编号0-n-1,'w'表示第一个人,'h'表示第二个人),每对两个,人坐在桌子两侧.满足:1.每对人中的两个人不能坐在同一侧 ...

随机推荐

  1. Hadoop完全分布式集群环境搭建

    1. 在Apache官网下载Hadoop 下载地址:http://hadoop.apache.org/releases.html 选择对应版本的二进制文件进行下载 2.解压配置 以hadoop-2.6 ...

  2. 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 php

    下面我们一起为服务器安装 PHP,在使用 yum 安装软件包的时候,yum 会去默认的资源库里查看我们要安装的软件包,然后到指定的服务器上下载并安装. 但是有的时候,我们要安装的软件包并没有包含在默认 ...

  3. eclipse部署web项目至本地的tomcat但在webapps中找不到问题

    一.发现问题 在eclipse中新建Dynamic Web Project,配置好本地的tomcat并写好代码后选择Run on Server,但运行后发现在tomcat的安装目录下的webapps并 ...

  4. ASIHTTPRequest的使用

    本文转自csdn ASIHTTPRequest对CFNetwork API进行了封装,并且使用起来非常简单,用Objective-C编写,可以很好的应用在Mac OS X系统和iOS平台的应用程序中. ...

  5. 更改 Linux 语言为中文

    查看当前系统语言环境:    echo $LANG 查看安了哪些中文语言包    locale -a |grep "zh_CN" 没有输出,说明没有安装,输入下面的命令安装     ...

  6. Docker容器学习--1

    Docker是PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源.Docker是通过内核虚拟化技 ...

  7. Python学习——numpy.random

    numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...

  8. 一次完整的HTTP请求需要的7个步骤

    HTTP通信机制是在一次完整的HTTP通信过程中,Web浏览器与Web服务器之间将完成下列7个步骤: 1:建立TCP连接 在HTTP工作开始之前,Web浏览器首先要通过网络与Web服务器建立连接,该连 ...

  9. js禁止微信浏览器下拉显示黑底查看网址

    // 首先禁止body document.body.ontouchmove = function (e) { e.preventDefault(); }; // 然后取得触摸点的坐标 var star ...

  10. Java开发学生管理系统

    Java 学生管理系统 使用JDBC了链接本地MySQL 数据库,因此在没有建立好数据库的情况下没法成功运行 (数据库部分, Java界面部分, JDBC部分) 资源下载: http://downlo ...