BZOJ1875 [SDOI2009]HH去散步 【dp + 矩阵优化】
题目
HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但
是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每
天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都
是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径
输入格式
第一行:五个整数N,M,t,A,B。
N表示学校里的路口的个数
M表示学校里的 路的条数
t表示HH想要散步的距离
A表示散步的出发点
B则表示散步的终点。
接下来M行
每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。
数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。
路口编号从0到N -1。
同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。
答案模45989。
N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B
输出格式
一行,表示答案。
输入样例
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
输出样例
4
题解
如果没有不能走回头路的限制,这道题就可以用邻接矩阵直接快速幂水过
但是有了这样的限制,我们需要重新考虑
注意到限制是路径中相邻的两个边不能是同一条边,注意到路径中相邻的点本就不会是同一个点
这启发我们可以将边点互换
把每条无向边拆成两条有向边,每条边分别向其指向的点为起点的边连线
这样子求出的邻接矩阵\(G\),\(G^t[i][j]\)就表示从\(i\)开始选出t条连续的边以\(j\)结束的方案数
经过\(t\)个点的路径只有\(t-1\)条边,故只需求出\(G^(t-1)\),然后统计A为起点的边到达B为终点的边的方案数
#include<iostream>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 125,INF = 1000000000,P = 45989;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
vector<int> ed[maxn];
int n,m,t,S,T,a[maxm],b[maxm];
struct Matrix{
int s[maxm][maxm],n,m;
Matrix(){memset(s,0,sizeof(s)); n = m = 0;}
}G;
Matrix operator *(const Matrix& a,const Matrix b){
Matrix ans;
if (a.m != b.n) return ans;
ans.n = a.n; ans.m = b.m;
for (int i = 0; i < ans.n; i++)
for (int j = 0; j < ans.m; j++)
for (int k = 0; k < a.m; k++)
ans.s[i][j] = (ans.s[i][j] + a.s[i][k] * b.s[k][j] % P) % P;
return ans;
}
Matrix qpow(Matrix a,int b){
Matrix ans; ans.n = ans.m = a.n;
for (int i = 0; i < ans.n; i++) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int main(){
n = read(); m = read(); t = read(); S = read(); T = read();
G.n = G.m = 2 * m;
int u,v,ans = 0;
for (int i = 0; i < m; i++){
a[i] = u = read(); b[i] = v = read();
ed[u].push_back(i);
ed[v].push_back(i + m);
}
for (int i = 0; i < m; i++){
for (int j = 0; j < ed[b[i]].size(); j++)
if (ed[b[i]][j] != i + m)
G.s[i][ed[b[i]][j]] = 1;
for (int j = 0; j < ed[a[i]].size(); j++)
if (ed[a[i]][j] != i) G.s[i + m][ed[a[i]][j]] = 1;
}
Matrix F = qpow(G,t - 1);
for (int i = 0; i < m; i++){
if (a[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i][j]) % P;
if (a[j] == T) ans = (ans + F.s[i][j + m]) % P;
}
}
if (b[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i + m][j]) % P;
if (a[j] == T) ans = (ans + F.s[i + m][j + m]) % P;
}
}
}
printf("%d\n",ans);
return 0;
}
BZOJ1875 [SDOI2009]HH去散步 【dp + 矩阵优化】的更多相关文章
- [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]
题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- bzoj1875: [SDOI2009]HH去散步
终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...
- BZOJ1875 [SDOI2009]HH去散步 矩阵
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...
- 【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)
bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是 ...
- bzoj1875 [SDOI2009]HH去散步——矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...
随机推荐
- SG函数入门&&HDU 1848
SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...
- BCB:使用CppWebBrowser判断网页加载完成
void __fastcall TForm1::CppWebBrowser1DocumentComplete(TObject *Sender, LPDISPATCH pDisp, Variant *U ...
- SC || Chapter 5 复习向
可复用性 ┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉ 行为子结构 对于父子的继承关系的要求: ·子类可以增加方法,但不可以删 ·子类需实现抽象类型中未实现的方法 ·子类重写(override)的方法必须 ...
- java,求1-100之和。
package study01; public class TestWhile { public static void main(String[] args) { int sum = 0; int ...
- Windows平台下MySQL常用操作与命令
Windows平台下MySQL常用操作与命令 Windows平台下MySQL常用操作与命令,学习mysql的朋友可以参考下. 1.导出整个数据库 mysqldump -u 用户名 -p --defau ...
- jquery.imgpreload.min.js插件实现页面图片预加载
页面分享地址: http://wenku.baidu.com/link?url=_-G8miwbgDmEj6miyFtjit1duJggBCJmFjR2jky_G1VftD9eS9kwGOlFWAOR ...
- nginx作为正向代理,反向代理的一些应用
正向代理代理的对象是客户端 反向代理代理的对象是服务端 举例说下nginx作为正向代理作访问控制 server{ listen 80; server_name localhost jeson.gaos ...
- 无需上传附件到服务器,Servlet读取Excel(二)
package com.str; import java.io.File;import java.io.FileInputStream;import java.io.IOException; impo ...
- 科学计算库Numpy——numpy.ndarray
创建ndarray 元素类型 对于ndarray结构来说,里面所有的元素必须是同一类型的,如果不是的话,会自动的向下进行转换. 元素类型所占字节数 数组维数 元素个数 数组的维度 数组中填充固定值 索 ...
- 转:跟我一起写Makefile (PDF重制版)
原文地址:http://seisman.info/how-to-write-makefile.html 其它一些问题 不妨看一下:http://blog.csdn.net/huyansoft/art ...