P2261 bzoj1257 [CQOI2007]余数求和
一道数论分块
首先这类的求和写一下公式
∑n%i=∑n-i*(n/i)=
∑n-∑i*(n/i)
前面的好求所以
ans=nk+∑k*(k/i);
于是进行分块
这里总结一下
只要出现除法∑就进行分块
由阿尔贝和推论
加号后面的也等于
(∑i)(∑(k/【i】-k+1/【i】))(阿尔贝恒等式)
这样是不是更显然了
∑i等差数列求和
后面的参见我的数论分块另一个博客 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main() {
ll n,k;
cin>>n>>k;
ll ans=n*k;
for(ll l=,r;l<=n;l=r+) {
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
}
cout<<ans;
return ;
}
P2261 bzoj1257 [CQOI2007]余数求和的更多相关文章
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
随机推荐
- 海思3559A QT 5.12移植(带webengine 和 opengl es)
海思SDK版本:Hi3559AV100_SDK_V2.0.1.0 编译器版本:aarch64-himix100-linux-gcc 6.3.0(这个版本有点小问题,使用前需要先清除本地化设置) $ e ...
- java泛型笔记一
名词:泛型类 泛型方法 原始类型 子类型 版本 参数化类型 通配符类型 超类通配 子类通配 全通配 定义变量 创建对象 检查模板 类型实参 类型形参 补充 替代语法特征:尖括号括起来的类型参数表 // ...
- $.ajax()与vue结合获取数据并渲染
html: <div id="app1"> <ul> <li v-for="item in datas"> <div ...
- 解决XP“不是有效Win32程序” 不是改Platform toolset
背景 最近在写一个窗口程序,想在Windows XP上也能跑.先用vs 2015的App Wizard生成了一个实例窗口程序,按照网上大部分攻略,将 "Properties - Genera ...
- bzoj1492 [NOI2007]货币兑换Cash【cdq分治】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1492 推荐博客:http://www.cnblogs.com/zig-zag/archive ...
- Gym - 101810A ACM International Collegiate Programming Contest (2018)
bryce1010模板 http://codeforces.com/gym/101810/problem/A 大模拟,写崩了,代码借队友的...... 注意处理段与段的连接问题: #include&l ...
- 转 测试linux中expect的timeout参数的作用
http://blog.csdn.net/msdnchina/article/details/50638818
- The Weakest Sith
http://codeforces.com/gym/101149/problem/F 题目要输出最丑陋的衣服.所以每件衣服都要和其他衣服比一次. 但是注意到,能赢一件衣服的衣服,就算是好衣服了. 那么 ...
- Crusher Django 学习笔记2 基本url配置
http://crusher-milling.blogspot.com/2013/09/crusher-django-tutorial2-conf-basic-url.html 顺便学习一下FQ Cr ...
- python flask学习(1)与Git基础操作
今天从简单的flask开始完成Flask web开发的学习.今天学习了Git和GitHub项目的提交. Git尝试提交过程中出现了"Could not read from remote re ...