一道数论分块
首先这类的求和写一下公式
∑n%i=∑n-i*(n/i)=
∑n-∑i*(n/i)
前面的好求所以 
ans=nk+∑k*(k/i);
于是进行分块
这里总结一下
只要出现除法∑就进行分块
由阿尔贝和推论
加号后面的也等于
(∑i)(∑(k/【i】-k+1/【i】))(阿尔贝恒等式)
这样是不是更显然了
∑i等差数列求和
后面的参见我的数论分块另一个博客 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main() {
ll n,k;
cin>>n>>k;
ll ans=n*k;
for(ll l=,r;l<=n;l=r+) {
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
}
cout<<ans;
return ;
}

P2261 bzoj1257 [CQOI2007]余数求和的更多相关文章

  1. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  2. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  3. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  4. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  5. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  6. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  7. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  8. BZOJ1257 CQOI2007 余数之和 【数分块】

    BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...

  9. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

随机推荐

  1. spring框架——依赖注入

    依赖注入:DI 又称控制反转:IoC 项目名字spring_DI 一.implement包中定义了两个接口Food和Person 1.接口Food package org.interfaces; pu ...

  2. 自定义UIButton 实现图片和文字 之间距离和不同样式

    喜欢交朋友的加:微信号 dwjluck2013 1.UIButton+ImageTitleSpace.h #import <UIKit/UIKit.h> // 定义一个枚举(包含了四种类型 ...

  3. Flask (一) 简介

    Flask简介 Flask是一个基于Python实现的Web开发‘微’框架 'MicroFramework' Django是一个重型框架 官方文档: http://flask.pocoo.org/do ...

  4. UWP 画一个圆形头像

    经常需要做一个圆形头像的样式,like this 做法很简单,直接上xaml. <Ellipse Width=" Height="> <Ellipse.Fill& ...

  5. [BZOJ2251/BJWC2010]外星联络

    Description 小 P 在看过电影<超时空接触>(Contact)之后被深深的打动,决心致力于寻找外星人的事业.于是,他每天晚上都爬在屋顶上试图用自己的收音机收听外星人发来的信息. ...

  6. [HDU1595] find the longest of the shortest

    题目链接: 点我 题意: 给定一个\(n\)个点,\(m\)条边的带权无向图,起点为\(1\),终点为\(n\),现在可以删去其中的一条边,求一种删边方案使得剩下图的最短路值最大,输出这个最短路的长度 ...

  7. python之模块random,time,os,sys,序列化模块(json,pickle),collection

    引入:什么是模块:   一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类型. 1.使用python编写的代码(.py ...

  8. 牛客网Java刷题知识点之什么是cookie、什么是session、cookie和session有什么区别

    不多说,直接上干货! https://www.nowcoder.com/ta/review-java/review?tpId=31&tqId=21170&query=&asc= ...

  9. ASP.NET MVC 复制MVC项目代码到同一个项目的时候报错The request for ‘home’ has found the following matching controll

    ASP.NET MVC 复制MVC项目代码到同一个项目的时候报错The request for ‘home’ has found the following matching controll “/” ...

  10. VS2015 C#利用QrCodeNet生成QR Code

    Step by step Create QR Code with QrCodeNet Step.1 新建項目 Step.2 在窗口中拖入一個Button Step.3 下載QrCodeNet代碼,解壓 ...