题目描述

AA国有nn座城市,编号从 1到n,城市之间有m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

第一行有两个用一个空格隔开的整数n,m,表示 A 国有 n 座城市和 m 条道路。

接下来 m行每行3个整数 x,y,z,每两个整数之间用一个空格隔开,表示从 xx号城市到yy号城市有一条限重为 z的道路。注意:x 不等于 y,两座城市之间可能有多条道路 。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y 。

输出格式:

共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

输入输出样例

输入样例#1:

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:

3
-1
3

说明

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,0000<n<1,000,0<m<10,000,0<q<1,000;

对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,0000<n<1,000,0<m<50,000,0<q<1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,0000<n<10,000,0<m<50,000,0<q<30,000,0≤z≤100,000。

--------------------------------------------------------------------

这道题的思路就是先用最大生成树将图跑成一棵新树,然后在跑LCA的时候更新路上的最小值

为什么呢,“我们可以发现有一些权值较小的边是不会被走过的。正如样例中的第三条边,就算有其他的很多条边,这条边无论如何也是不会被走过的。于是我们想到了可以将图中这样的边去掉,按照这个思路我们便想到了构造最大生成树,将其余的边去除。”(来自luogu的大佬

然后我的关注点就变为了如何在LCA上记录最小值呢?

在预处理每个点的父亲的时候 我们用一个相似的f[i][j]数组来记录i跳2^j时的最小边权

注意:LCA在开数组的时候,maxn=20, 则p[N][maxn+5] (这个错查了2h....以后绝对不能再犯了

 #include<bits/stdc++.h>
#define N 100010
#define maxn 20
#define INF 0x7f7f7f7f
#define ll long long
using namespace std;
int n,m,q;
struct node
{
int u,v,nxt;
ll w;
}e[N*],d[N*];
int first[N],cnt;
void ade(int u,int v,ll w)
{
e[++cnt].nxt=first[u]; first[u]=cnt;
e[cnt].u=u; e[cnt].v=v; e[cnt].w=w;
} int fir[N],cnnt;
void adde(int u,int v,ll w)
{
d[++cnnt].nxt=fir[u]; fir[u]=cnnt;
d[cnnt].u=u; d[cnnt].v=v; d[cnnt].w=w;
}
/*-------kruskal---------*/
int fa[N];
int la(int x)
{
if(fa[x]!=x) fa[x]=la(fa[x]);
return fa[x];
}
bool cmp(node a,node b)
{
return a.w>b.w;
}
void kruskal()
{
for(int i=;i<=n;i++) fa[i]=i;
sort(e+,e+cnt+,cmp);
for(int i=;i<=cnt;i++)
{
int x=la(e[i].u),y=la(e[i].v);
if(x!=y)
{
fa[x]=y;
adde(e[i].u,e[i].v,e[i].w);
adde(e[i].v,e[i].u,e[i].w);
}
}
// cout<<"!!!!";
// for(int i=1;i<=cnnt;i+=2)
// printf("%d %d %d\n",d[i].u,d[i].v,d[i].w);
// cout<<"!!!!";
} /*-----lca------*/
int dep[N],p[N][maxn+];
ll val[N][maxn+];
bool vis[N];
void pre()
{
for(int j=;j<=maxn;j++)
for(int i=;i<=n;i++)
{
p[i][j]=p[p[i][j-]][j-];
val[i][j]=min(val[i][j-],val[p[i][j-]][j-]);
}
}
void dfs(int u,int fath)
{
vis[u]=;
dep[u]=dep[fath]+;
p[u][]=fath;
for(int i=fir[u];i;i=d[i].nxt)
{
int v=d[i].v;
if(vis[v]) continue;
val[v][]=d[i].w;
dfs(v,u);
}
}
ll lca(int x,int y)
{
ll minx=INF;
if(dep[x]<dep[y]) swap(x,y);
for(int i=maxn;i>=;i--)
if(dep[x]-(<<i)>=dep[y])
{
minx=min(minx,val[x][i]);
x=p[x][i];
}
if(x==y) return minx;
for(int i=maxn;i>=;i--)
if(p[x][i]!=p[y][i])
{
minx=min( minx, min(val[x][i],val[y][i]) );
x=p[x][i],y=p[y][i];
}
minx=min( minx, min(val[x][],val[y][]) );
return minx;
}
/*---------*/
int main()
{
scanf("%d%d",&n,&m);
memset(val,INF,sizeof(val));
for(int i=,x,y;i<=m;i++)
{
ll z;
scanf("%d%d%lld",&x,&y,&z);
ade(x,y,z);
}
kruskal();
for(int i=;i<=n;i++)
if(!vis[i]) dfs(i,);
pre();
scanf("%d",&q);
while(q--)
{
int x,y;
scanf("%d%d",&x,&y);
if(la(x)!=la(y)) printf("-1\n");
else printf("%lld\n",lca(x,y));
}
return ;
}
/*
10 24
4 7 19038
7 10 7375
7 9 17853
9 8 6341
7 2 16976
10 3 2835
10 4 19285
9 4 29193
3 4 4852
3 8 16597
9 1 4138
9 7 21611
7 4 10586
10 4 7821
10 9 25636
3 9 28425
2 3 17229
4 8 11331
9 2 25053
6 4 929
8 3 1738
10 9 28542
1 2 28343
3 5 13215
9
7 5
2 4
10 2
5 10
7 10
4 3
10 1
10 4
8 4 */
/*
13215
25053
25053
13215
21611
28425
25053
28542
16597
*/

【NOIP2013】货车运输 最大生成树+LCA的更多相关文章

  1. luogu 1967 货车运输(最大生成树+LCA)

    题意:给出一颗n个点的图,q个询问,每次询问u到v的路径中最小的边最大是多少. 图的最大生成树有一个性质,对于该图的任意两个点,在树中他们之间路径的最小边最大. 由于这个图不一定联通,于是我们对它的联 ...

  2. Luogu1967 NOIP2013 货车运输 最大生成树、倍增

    传送门 题意:给出一个$N$个节点.$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值.$N \leq 10000 , M \leq 50000 , Q ...

  3. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  4. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  5. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  6. NOIP2013 货车运输

    3.货车运输 (truck.cpp/c/pas) [问题描述] A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货 ...

  7. Codevs3278[NOIP2013]货车运输

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond      题目描述 Description A 国有 ...

  8. 【洛谷P1967】[NOIP2013]货车运输

    货车运输 题目链接 显然,从一点走到另一点的路径中,最小值最大的路径一定在它的最大生成树上 所以要先求出最大生成树,再在生成树上找最近公共祖先,同时求出最小值. #include<iostrea ...

  9. 洛谷—— P1967 货车运输 || COGS——C 1439. [NOIP2013]货车运输

    https://www.luogu.org/problem/show?pid=1967#sub  ||  http://www.cogs.pro/cogs/problem/problem.php?pi ...

随机推荐

  1. window.open()弹出窗口参数说明及居中设置

    window.open()可以弹出一个新的窗口,并且通过参数控制窗口的各项属性. 最基本的弹出窗口代码 window.open('httP://codeo.cn/'); window.open()各参 ...

  2. C++ error:Debug Assertion Failed.Expression:_BLOCK_TYPE_IS_VALID(phead->nBlock)

    Debug Assertion Failed.Expression:_BLOCK_TYPE_IS_VALID(phead->nBlockUse) 关于上面这个错误,我在上一篇文章中的程序遇到过了 ...

  3. virtualapk爬坑心得

    1.宿主和插件的工程build.gradle必须是 com.android.tools.build:gradle:2.1.3 gradle-wrapper 必须是 gradle-2.14.1-all ...

  4. 宿主机Windows访问虚拟机Linux文件(二)

    上一篇文章中详细讲述FTP服务(基于文件传输协议的服务),本文则介绍另一种能够实现此功能Telnet(Telecommunications network 远程登陆)服务.本文介绍的telnet我常用 ...

  5. [SecureCRT]通过SFTP方式上传本地文件到服务器

    1.在本地建一个文件夹,如:d:\My Documents,在此目录下,放入我们需要上传的文件,如:nmon_linux_x86_64 2.然后打开我们的SecureCRT工具,一次选择Options ...

  6. 洛谷 P2733 家的范围 Home on the Range

    题目背景 农民约翰在一片边长是N (2 <= N <= 250)英里的正方形牧场上放牧他的奶牛.(因为一些原因,他的奶牛只在正方形的牧场上吃草.)遗憾的是,他的奶牛已经毁坏一些土地.( 一 ...

  7. SAP GUI里Screen Painter的工作原理

    我们在SAP GUI里双击一个screen编号: 单击Layout按钮可以打开Screen Painter: 这背后的工作原理是什么? 是这个RFC destination在起作用: Connecti ...

  8. mdns小结

    mdns的功能和普通DNS很类似,即提供主机名到IP地址的解析服务.   mdns一些基本特性: 1,mdns主要为小型私有网络(不存在DNS)提供名称解析. 2,mdns使用多播(Multicast ...

  9. HTML_5 (1 2 3的代码总结)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. prometheus-简介及安装

    监控是整个产品周期中最重要的一环,及时预警减少故障影响免扩大,而且能根据历史数据追溯问题. 对系统不间断实时监控 实时反馈系统当前状态 保证业务持续性运行 监控系统 监控方案 告警 特点 适用 Zab ...