bzoj 3559: [Ctsc2014]图的分割【最小生成树+并查集】
读题两小时系列……
在读懂题意之后,发现M(c)就是c这块最大权割边也就是的最小生成树的最大权边的权值,所以整个问题都可以在MST的过程中解决(M和c都是跟着并查集变的)
不过不是真的最小生成树,是合并了所有a[i].w<=min(b[zhao(f[a[i].u])]+z[c[zhao(f[a[i].u])]],b[zhao(f[a[i].v])]+z[c[zhao(f[a[i].v])]])的边的若干联通块,根据定义那样的边不能连在两块之间,一定需要放在一个块里,然后每次合并的时候更新M和c即可
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int N=1000005;
int n,m,z[N],b[N],c[N],s[N],ans,f[N];
vector<int>v[N];
struct qwe
{
int u,v,w;
}a[N];
bool cmp(const qwe &a,const qwe &b)
{
return a.w<b.w;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int zhao(int x)
{
return f[x]==x?x:f[x]=zhao(f[x]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
z[i]=read(),f[i]=i,c[i]=1;
for(int i=1;i<=m;i++)
a[i].u=read(),a[i].v=read(),a[i].w=read();
sort(a+1,a+1+m,cmp);
for(int i=1;i<=m;i++)
if(a[i].w<=min(b[zhao(f[a[i].u])]+z[c[zhao(f[a[i].u])]],b[zhao(f[a[i].v])]+z[c[zhao(f[a[i].v])]]))
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
{
f[fu]=fv;
c[fv]+=c[fu];
b[fv]=a[i].w;
}
}
for(int i=1;i<=n;i++)
v[zhao(f[i])].push_back(i);
for(int i=1;i<=n;i++)
if(v[i].size())
ans++;
printf("%d\n",ans);
for(int i=1;i<=n;i++)
if(v[i].size())
{
printf("%d ",v[i].size());
for(int j=0;j<v[i].size();j++)
printf("%d ",v[i][j]);
puts("");
}
return 0;
}
bzoj 3559: [Ctsc2014]图的分割【最小生成树+并查集】的更多相关文章
- bzoj 3206: [Apio2013]道路费用【最小生成树+并查集】
参考:http://hzwer.com/6888.html 把k条道路权值设为0,和其他边一起跑MST,然后把此时选中的其他边设为必选,在新图中加上必选变缩成k个点,把所有边重标号,枚举k跳边的选取情 ...
- [Ctsc2014]图的分割
[Ctsc2014]图的分割 阅读理解好题 翻译一下: M(C)就是C这个诱导子图最小生成树最大边权 结论: 按照w进行sort,如果满足w<=Ci,Cj表示u,v的连通块的诱导子图 并且Ci! ...
- UVA 1395 苗条的生成树(最小生成树+并查集)
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目 ...
- CSP 201703-4 地铁修建【最小生成树+并查集】
问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...
- 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...
- The Shortest Statement CodeForces - 1051F 最小生成树+并查集+LCA
题目描述 You are given a weighed undirected connected graph, consisting of n vertices and mm edges. You ...
- I-图的分割(二分+并查集)
图的分割 题目大意: 给你n个点,m条边的图,没有重环和自环,所有的点都联通 可以通过删除几条边使得整个图变成两个联通子图 求删除的边中最大边权的最小值 解题思路: 看到"最大边权的最小值& ...
- 【BZOJ】1015: [JSOI2008]星球大战starwar(并查集)
http://www.lydsy.com/JudgeOnline/problem.php?id=1015 看了题解的囧T_T,一开始以为是求割点,但是想到割点不能统计.... 这题用并查集,思想很巧妙 ...
- BZOJ 1050 旅行comf(枚举最小边-并查集)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1050 题意:给出一个带权图.求一条s到t的路径使得这条路径上最大最小边的比值最小? 思路 ...
随机推荐
- (转)c#(wince)中使用多线程访问winform中控件的问题
我们在做winform应用的时候,大部分情况下都会碰到使用多线程控制界面上控件信息的问题.然而我们并不能用传统方法来做这个问题,下面我将详细的介绍. 首先来看传统方法: public partial ...
- 1492: [NOI2007]货币兑换Cash【CDQ分治】
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4166 Solved: 1736[Submit][Sta ...
- 【BZOJ4956】lydsy七月月赛 I 乱搞
[BZOJ4956]lydsy七月月赛 I 题面 题解:傻题,Floyd传递闭包即可~ #include <cstdio> #include <cstring> #includ ...
- spring 过滤器简介
spring 过滤器简介 过滤器放在容器结构的什么位置 过滤器放在web资源之前,可以在请求抵达它所应用的web资源(可以是一个Servlet.一个Jsp页面,甚至是一个HTML页面)之前截获进入的请 ...
- c# winform中预防窗体重复打开
当窗体以非模态形式打开的时候,有可能出现重复打开的情形,利用以下的代码可以预防重复打开! foreach (Form f in Application.OpenForms) { if (f.Nam ...
- git 的安装
git在开发中已经成了必备工具了,我们来看看git在各个平台上的安装 1.Linux上安装git $sudo apt-get install git 2.mac上安装 1)homebrew安装git ...
- Cocos2d-x如何添加新场景及切换新场景(包括场景特效)
做了一天多的工作终于把此功能搞定了,实际上添加新场景花费不了多少时间,时间主要花在切换到另一个场景的实现上,主要原因是编译时出现了一个错误,百思不得其解,后来经过查资料不断摸索才知道自己问题的所在,改 ...
- 对于iPhone描述文件的签名认证
1.购买SSL证书验证(跟https认证一样) 2.iphone 签名.mobileconfig文件 company.mobileconfig 未签名的mobileconfig文件 server.cr ...
- vim编辑makefile时临时不展开tab为空格
可以先敲ctrl-v组合键,再敲tab键,这样就不会被转换成空格了. 给自己的备忘!
- discuz邮箱注册激活||腾讯企业邮箱免费注册及登录方法
如何申请免费的企业邮箱,如果拥有了网站,还能有一个免费的域名邮箱,是不是很拉风呢?对于还没有注册企业的用户来说,优先使用企业邮箱,是非常好的事呢. 腾讯邮箱现在开放免费的企业邮箱注册,效果要比个人邮箱 ...