HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )
How many prime numbers
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12955 Accepted Submission(s): 4490
are a lot of cases. In each case, there is an integer N representing
the number of integers to find. Each integer won’t exceed 32-bit signed
integer, and each of them won’t be less than 2.
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm> using namespace std; long long pow_mod(long long a, long long i, long long n)
{
if(i==0) return 1%n;
long long temp=pow_mod(a, i>>1, n);
temp = temp*temp%n;
if(i&1)
temp = (long long)temp*a%n;
return temp;
} bool test(int n, int a, int dd)
{
if(n==2) return true;
if(n==a) return true;
if( (n&1)==0 ) return false;
while(!(dd&1)) dd=dd>>1; int t=pow_mod(a, dd, n); //调用快速幂函数
while((dd!=n-1) &&(t!=1) && (t!=n-1) )
{
t = (long long)t*t%n;
dd=dd<<1;
}
return (t==n-1 || (dd&1)==1 );
} bool Miller_Rabin_isPrime(int n) //O(logN)
{
if(n<2) return false;
int a[]={2, 3, 61}; //
for(int i=0; i<3; i++)
if(!test(n, a[i], n-1) )
return false;
return true;
} int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
int dd;
int cnt=0;
while(n--)
{
scanf("%d", &dd);
if(Miller_Rabin_isPrime(dd))
cnt++;
}
printf("%d\n", cnt );
}
return 0;
}
HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )的更多相关文章
- HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)
Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...
- HDU 2138 How many prime numbers
米勒罗宾素数测试: /* if n < 1,373,653, it is enough to test a = 2 and 3. if n < 9,080,191, it is enoug ...
- HDU 2138 How many prime numbers (判素数,米勒拉宾算法)
题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...
- POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19350 Ac ...
- poj3006 筛选法求素数模板(数论)
POJ:3006 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. 筛选法求素数的大概思路是: 如果a这个数是一个质数,则n*a不是质数. 用一个数组实现就是 ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- 【HDU】2138 How many prime numbers
http://acm.hdu.edu.cn/showproblem.php?pid=2138 题意:给n个数判断有几个素数.(每个数<=2^32) #include <cstdio> ...
- hdu 5108 Alexandra and Prime Numbers(水题 / 数论)
题意: 给一个正整数N,找最小的M,使得N可以整除M,且N/M是质数. 数据范围: There are multiple test cases (no more than 1,000). Each c ...
- hdu 5108 Alexandra and Prime Numbers
数论题,本质是求出n的最大质因子 #include<time.h> #include <cstdio> #include <iostream> #include&l ...
随机推荐
- HTML5 Canvas 绘制澳大利亚国旗
代码: <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Content-Type ...
- POJ 开关问题 1830【高斯消元求矩阵的秩】
Language: Default 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6656 Accepted: ...
- UNP学习笔记(第十四章 高级I/O函数)
本章讨论我们笼统地归为“高级I/O”的各个函数和技术 套接字超时 有3种方法在涉及套接字的I/O操作上设置超时 1.调用alarm,它在指定超时时期满时产生SIGALRM信号 2.在select中阻塞 ...
- int a; int* a; int** a; int (*a)[]; int (*a)(int)
a) int a;表示一个内存空间,这个空间用来存放一个整数(int):b) int* a;表示一个内存空间,这个空间用来存放一个指针,这个指针指向一个存放整数的空间,即a)中提到的空间:c) int ...
- ASP.NET MVC 扩展自定义视图引擎支持多模板&动态换肤skins机制
ASP.NET mvc的razor视图引擎是一个非常好的.NET MVC 框架内置的视图引擎.一般情况我们使用.NET MVC框架为我们提供的这个Razor视图引擎就足够了.但是有时我们想在我们的 ...
- Apc缓存Opcode(转)
1.PHP执行 PHP的运行阶段也分成三个阶段: Parse.语法分析阶段. Compile.编译产出opcode中间码. Execute.运行,动态运行进行输出. ...
- Spring Boot 从入门到实战汇总
之前写过几篇spring boot入门到实战的博文,因为某些原因没能继续. 框架更新迭代很快,之前还是基于1.x,现在2.x都出来很久了.还是希望能从基于该框架项目开发的整体有一个比较系统的梳理,于是 ...
- 02-cookie案例-显示用户上次访问网站的时间
package cookie; import java.io.IOException;import java.io.PrintWriter;import java.util.Date; import ...
- centos 6.9 x86 安装搭建hadoop集群环境
又来折腾hadoop了 文件准备: centos 6.9 x86 minimal版本 163的源 下软件的时候可能会用到 jdk-8u144-linux-i586.tar.gz ftp工具 putty ...
- 新装上线 年度精品 XP,32/64位Win7,32/64位Win10系统【电脑城版】
随着Windows 10Build 10074 Insider Preview版发布,有理由相信,Win10离最终RTM阶段已经不远了.看来稍早前传闻的合作伙伴透露微软将在7月底正式发布Win10的消 ...