最长回文子序列

给定一个字符串s,找到其中最长的回文子序列。可以假设s的最大长度为1000。

示例 1:
输入:

"bbbab"

输出:

4

一个可能的最长回文子序列为 "bbbb"。

示例 2:
输入:

"cbbd"

输出:

2

一个可能的最长回文子序列为 "bb"。

思路解析

分治算法去解决这道题是第一思路,即对于一个长度为n的字符串,对应于一个分治算法的状态数组dp[n-1][n-1],该数组的值对应字符串中最长回文子序列的长度,如dp[i][j]则代表着字符串中第i位到第j位的子序列中的最长回文子序列长度为dp[i][j],明确这一点后,我们要作的即为求出dp[0][n-1]的值并输出即可。

利用分治算法的思想,当某子串s(i,j)中s[i]与s[j]相等时,那么其头尾两字符一定位于其最长回文子串中,因此该子串的最长回文子序列长度等于去掉头尾两字符后新子串的最长回文子序列长度加二,我们可制定公式如下:dp[i][j] = dp[i + 1][j - 1] + 2。当s[i]与s[j]不相等时,则dp[i][j] = max(de[i + 1][j],dp[i][j - 1])。有了这个规则,我们接下来只需要遍历出该字符串s的每一个子串,即dp数组中的每一个值,最终输出dp[0][n-1]。

 class Solution {
public int longestPalindromeSubseq(String s) {
int len=s.length();
int[][] dp=new int[len][len];
if(len==0||len==1) return len;
for(int j=0;j<len;j++){
dp[j][j]=1;
for(int i=j-1;i>=0;i--){
if(s.charAt(i)==s.charAt(j)){
dp[i][j]=dp[i+1][j-1]+2;
}else{
dp[i][j]=Math.max(dp[i+1][j],dp[i][j-1]);
}
}
}
return dp[0][len-1];
}
}

Leetcode 516.最长回文子序列的更多相关文章

  1. Java实现 LeetCode 516 最长回文子序列

    516. 最长回文子序列 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 ...

  2. LeetCode 516——最长回文子序列

    1. 题目 2. 解答 与最长回文子串类似,我们可以用动态规划来求解这个问题,只不过这里的子序列可以不连续.我们定义状态 state[i][j] 表示子串 s[i, j] 的最长回文子序列长度,那么状 ...

  3. LeetCode.516 最长回文子序列 详解

    题目详情 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bb ...

  4. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  5. 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...

  6. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  7. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  8. [Swift]LeetCode516. 最长回文子序列 | Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  9. LPS(最长回文子序列)

    (注意:我发现最长回文子序列(Longest Palindromic Subsequence)问题与最长回文子串(Longest Palindromic Substring)不一样,子序列不要求下标一 ...

随机推荐

  1. COGS 750. 栅格网络流

    ★★☆   输入文件:flowa.in   输出文件:flowa.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] Bob 觉得一般图的最大流问题太难了,他不知道如何解决 ...

  2. HDU5269 字典树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5269 ,BestCoder Round #44的B题,关于字典树的应用. 比赛的时候没想出做法,现在补 ...

  3. git版本管理工具 标签(Tag) / 版本回退 / 分支的简单使用

    a.标签 标签,可以使用这个功能来标记发布结点. 举个例子, 假如我们的项目版本目前是1.2版本, 上级要求这个版本要在半个月后再进行上传至Appstore, 并要求我们未来的半个月内,去写1.3版本 ...

  4. python_36_文件操作4

    f=open('test.txt','a',encoding='utf-8') #f.truncate()#截断,不指定将清空所有内容 f.truncate(5)#从头开始截断,截断5个字符 注:使用 ...

  5. windows平台下MongoDB安装和环境搭建

    下载安装包或者压缩包 添加db存储和日志存储文件夹 添加服务.配置环境变量.启动Mongo 本例:安装路径:D:Program Files/MongoDB 配置文件的路径:D:MongoDB 一.安装 ...

  6. gitlab文件夹的权限不要随便给777

    gitlab  权限给到777   不一定有用

  7. k8s基于RBAC的访问控制(用户授权)

    kubernetes的API Server常用的授权插件有:   Node.ABAC.RBAC.Webhook我们重点说一下RBAC的访问控制逻辑RBAC(Role base access contr ...

  8. ospf多区域实例配置

    需求:是pc1,pc2,pc3直接可以相互通信,ip分别pc1:192.168.1.2 pc2:192.168.3.2 pc3:192.168.5.2 LSW1配置: 首先划分vlan,vlan中配置 ...

  9. Python导入模块方法

    import module_name 导入整个模块 from module_name import function_name 导入特定函数 from module_name import funct ...

  10. 【jenkins】jenkins服务器与svn服务器时间不一致出现的问题

    问题描述: svn提交了一次更新包,到了jenkins提交更新的时候,第一次代码没有生效,然后重新提交了一次,第二次才生效. 问题排查: 1.首先第一反应比对了下两次更新的包文件是否一致,然后发现大小 ...