Leetcode 516.最长回文子序列
最长回文子序列
给定一个字符串s,找到其中最长的回文子序列。可以假设s的最大长度为1000。
示例 1:
输入:
"bbbab"
输出:
4
一个可能的最长回文子序列为 "bbbb"。
示例 2:
输入:
"cbbd"
输出:
2
一个可能的最长回文子序列为 "bb"。
思路解析
分治算法去解决这道题是第一思路,即对于一个长度为n的字符串,对应于一个分治算法的状态数组dp[n-1][n-1],该数组的值对应字符串中最长回文子序列的长度,如dp[i][j]则代表着字符串中第i位到第j位的子序列中的最长回文子序列长度为dp[i][j],明确这一点后,我们要作的即为求出dp[0][n-1]的值并输出即可。
利用分治算法的思想,当某子串s(i,j)中s[i]与s[j]相等时,那么其头尾两字符一定位于其最长回文子串中,因此该子串的最长回文子序列长度等于去掉头尾两字符后新子串的最长回文子序列长度加二,我们可制定公式如下:dp[i][j] = dp[i + 1][j - 1] + 2。当s[i]与s[j]不相等时,则dp[i][j] = max(de[i + 1][j],dp[i][j - 1])。有了这个规则,我们接下来只需要遍历出该字符串s的每一个子串,即dp数组中的每一个值,最终输出dp[0][n-1]。
class Solution {
public int longestPalindromeSubseq(String s) {
int len=s.length();
int[][] dp=new int[len][len];
if(len==0||len==1) return len;
for(int j=0;j<len;j++){
dp[j][j]=1;
for(int i=j-1;i>=0;i--){
if(s.charAt(i)==s.charAt(j)){
dp[i][j]=dp[i+1][j-1]+2;
}else{
dp[i][j]=Math.max(dp[i+1][j],dp[i][j-1]);
}
}
}
return dp[0][len-1];
}
}
Leetcode 516.最长回文子序列的更多相关文章
- Java实现 LeetCode 516 最长回文子序列
516. 最长回文子序列 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 ...
- LeetCode 516——最长回文子序列
1. 题目 2. 解答 与最长回文子串类似,我们可以用动态规划来求解这个问题,只不过这里的子序列可以不连续.我们定义状态 state[i][j] 表示子串 s[i, j] 的最长回文子序列长度,那么状 ...
- LeetCode.516 最长回文子序列 详解
题目详情 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bb ...
- [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...
- [LeetCode] Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- [Swift]LeetCode516. 最长回文子序列 | Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- LPS(最长回文子序列)
(注意:我发现最长回文子序列(Longest Palindromic Subsequence)问题与最长回文子串(Longest Palindromic Substring)不一样,子序列不要求下标一 ...
随机推荐
- Dll注入:x86/X64 SetThreadContext 注入
在<Windows核心编程>第七章说到了线程优先级等知识,其中谈到了ThreadContext线程上下背景文. 其中介绍了GetThreadContext函数来查看线程内核对象的内部,并获 ...
- UVA Mega Man's Mission(状压dp)
把消灭了那些机器人作为状态S,预处理出状态S下可以消灭的机器人,转移统计方案.方案数最多16!,要用64bit保存方案. #include<bits/stdc++.h> using nam ...
- NOIP2018赛前停课集训记(10.24~11.08)
前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...
- Linux运维必会的实战编程笔试题(19题)
以下Linux运维笔试面试编程题,汇总整理自老男孩.马哥等培训机构,由运维派根据实战需求,略有调整: 企业面试题1:(生产实战案例):监控MySQL主从同步是否异常,如果异常,则发送短信或者邮件给管理 ...
- subline 安装 package control
subline text2 输入 import urllib2,os,hashlib; h = '2915d1851351e5ee549c20394736b442' + '8bc59f460fa154 ...
- MFC-[转]基于MFC的ActiveX控件开发
作者:lidan | 出处:博客园 | 2012/3/13 16:10:34 | 阅读22次 ActiveX 控件是基于组件对象模型 (COM) 的可重用软件组件,广泛应用于桌面及Web应用中.在VC ...
- Luogu [P2708] 硬币翻转
硬币翻转 题目详见:硬币翻转 这道题是一道简单的模拟(其实洛谷标签上说这道题是搜索???),我们只需要每一次从前往后找相同的硬币,直到找到不同的硬币n,然后将找到的前n-1个相同的硬币翻过来,每翻一次 ...
- windows平台下MongoDB安装和环境搭建
下载安装包或者压缩包 添加db存储和日志存储文件夹 添加服务.配置环境变量.启动Mongo 本例:安装路径:D:Program Files/MongoDB 配置文件的路径:D:MongoDB 一.安装 ...
- css中让元素隐藏的多种方法
{ display: none; /* 不占据空间,无法点击 / } { visibility: hidden; / 占据空间,无法点击 / } { position: absolute; top: ...
- Openstack搭建(流水账)
Openstack管理三大资源:1.网络资源2.计算资源3.存储资源 Keystone 做服务注册 Glance 提供镜像服务 Nova 提供计算服务 Nova scheduler决策虚拟主机创建在哪 ...