注意:

  注意数组越界问题(提交出现runtimeError代表数组越界)

  刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越界问题,以后需要注意啦。

Description


The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above. 

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit. 

Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output

216
30
//数组越界会出现runtimeerror的错误,注意边的数目和点的数目不一样,用一个宏定义的时候注意是否会出现数组越界问题

/*
题意:
多组案例
每组案例第一行输入一个数字n
下面n-1行
每行的第一个数据都是一个字符start,字符从A往后依次排列
每行的第二个数据是一个数字num,表示有num个节点与该行第一个字符表示的节点相连
每行接下来的数据是num组end,cost,表示start到end的花费为cost
具体输入输出看案例就会懂
解法:Kruskal算法
*/
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <iostream>
using namespace std;
const int MAXN=;
/*边结构*/
typedef struct{
int start;//道路起点
int end;//道路终点
double value;//道路权值
}Edge;
Edge road[]; /*节点集合*/
int node[MAXN];
/*寻根函数*/
int Find_set(int n){
if(node[n]==-) return n;
return node[n] == n ? node[n] : Find_set(node[n]);
//return node[n]=Find_set(node[n]);
}
/*排序中的比较函数*/
bool cmp(Edge a,Edge b){
if(a.value<b.value) return true;
return false;
}
/*合并:将棵树合并成一棵树*/
bool Merge(int a,int b){
int r1=Find_set(a);
int r2=Find_set(b);
if(r1==r2) return false;
if(r1<r2) node[r2]=r1;
if(r2<r1) node[r1]=r2;
return true;
}
/*克鲁斯卡尔算法*/
int Kruskal(int N,int M){ //N 顶点数 M 边数
int num=;
int cost=;
sort(road,road+M,cmp);
for(int i=;i<M;i++){
if(Merge(road[i].start,road[i].end)){
num++;
cost+=road[i].value;
}
if(num==N-) break;
}
if(num!=N-) return -; //不能产生最小生成树
else return cost;
}
int main()
{
int n;
//freopen("input.txt", "r", stdin);
while(scanf("%d", &n) != EOF)
{
if(n == )
break;
for(int i = ; i < n; i++)
node[i] = i;
char s, e;
int num, cost, k = ;
for(int i = ; i < n-; i++)
{
cin >> s >> num;
for(int j = ; j < num; j++, k++)
{
cin >> e >> cost;
road[k].start = s - 'A';
road[k].end = e - 'A';
road[k].value = cost;
}
}
sort(road, road+k, cmp);
int ret = Kruskal(n, k);
printf("%d\n", ret);
}
return ;
}

kruskal算法求最小生成树(jungle roads的kruskal解法)的更多相关文章

  1. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  2. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  3. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  4. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  5. Kruskal算法求最小生成树

    Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...

  6. 859. Kruskal算法求最小生成树(模板)

    给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...

  7. Kruskal算法求最小生成树 笔记与思路整理

    整理一下前一段时间的最小生成树的算法.(其实是刚弄明白 Kruskal其实算是一种贪心算法.先将边按权值排序,每次选一条没选过的权值最小边加入树,若加入后成环就跳过. 先贴张图做个示例. (可视化均来 ...

  8. Kruskal算法求最小生成树(POJ2485)

    题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...

  9. AcWing 859. Kruskal算法求最小生成树 稠密图

    //稠密图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...

随机推荐

  1. 浅谈css盒模型

    在我们网页上的每一个元素,一个按钮,一段文本,一张图片等等,浏览器都将它们当做一个“盒子”看待,并把这样的盒子称为盒模型(box model).使用Chrome的右键>审查元素对某个网页上的元素 ...

  2. Ubuntu 14.04安装Sogou输入法

    在http://pinyin.sogou.com/linux/?r=pinyin页面可下载对应的的deb包.在http://pinyin.sogou.com/linux/help.php页面有搜狗输入 ...

  3. 使用EXTEND方式来分段处理大表的搬数据

    创建一个表: 记录rowid的分区段并作为处理的日志表: DROP TABLE DEAL_TABLE_EXTENT; CREATE TABLE DEAL_TABLE_EXTENT(seq        ...

  4. “error LNK1169: 找到一个或多个多重定义的符号”的解决方法(转载)

    解决方案: “error LNK1169: 找到一个或多个多重定义的符号”的解决方法(转载) 遇到的问题: 在.h头文件中采用namespace 命名空间报错 test.h namespace LMR ...

  5. Java格式化输出

    Java的格式化输出等同于String.Format,与C有很大的相似,比如 System.out.printf("%8.2f", x);在printf中,可以使用多个参数,例如: ...

  6. java中JSON串转换并获取数据

    String strAllImp= " [{"id":2,"name":"还不错","count":3}]&q ...

  7. 动态sql构建的过程

    基本原理:使用xsqlbuilder框架完成动态sql的构建. 基本流程:使用WebUtils.getParametersStartingWith(ServletActionContext.getRe ...

  8. css书写顺序和常用命名推荐

    写代码的时候有一个好的规范和顺序能够帮你节省很多时间.下文将推荐相关CSS书写顺序和规范的一些方法.这个文档将会整理进前端规范文档中,如果你有更好的意见,不妨留言告知我们. CSS书写顺序 该代码来自 ...

  9. GoF——组合模式

    组合模式:将对象组合成树形结构以表示“部分-真题”的结构层次.组合模式使得用户对单个对象和组合对象的使用具有一致性. 结构图: using System; using System.Collectio ...

  10. Python环境变量配置问题

    安装Python2.7后,在环境变量中加入路径方法如下: 1,设置:右键单击计算机-->属性-->高级系统设置-->环境变量-->Path-->编辑Path-->在 ...