注意:

  注意数组越界问题(提交出现runtimeError代表数组越界)

  刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越界问题,以后需要注意啦。

Description


The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above. 

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit. 

Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output

216
30
//数组越界会出现runtimeerror的错误,注意边的数目和点的数目不一样,用一个宏定义的时候注意是否会出现数组越界问题

/*
题意:
多组案例
每组案例第一行输入一个数字n
下面n-1行
每行的第一个数据都是一个字符start,字符从A往后依次排列
每行的第二个数据是一个数字num,表示有num个节点与该行第一个字符表示的节点相连
每行接下来的数据是num组end,cost,表示start到end的花费为cost
具体输入输出看案例就会懂
解法:Kruskal算法
*/
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <iostream>
using namespace std;
const int MAXN=;
/*边结构*/
typedef struct{
int start;//道路起点
int end;//道路终点
double value;//道路权值
}Edge;
Edge road[]; /*节点集合*/
int node[MAXN];
/*寻根函数*/
int Find_set(int n){
if(node[n]==-) return n;
return node[n] == n ? node[n] : Find_set(node[n]);
//return node[n]=Find_set(node[n]);
}
/*排序中的比较函数*/
bool cmp(Edge a,Edge b){
if(a.value<b.value) return true;
return false;
}
/*合并:将棵树合并成一棵树*/
bool Merge(int a,int b){
int r1=Find_set(a);
int r2=Find_set(b);
if(r1==r2) return false;
if(r1<r2) node[r2]=r1;
if(r2<r1) node[r1]=r2;
return true;
}
/*克鲁斯卡尔算法*/
int Kruskal(int N,int M){ //N 顶点数 M 边数
int num=;
int cost=;
sort(road,road+M,cmp);
for(int i=;i<M;i++){
if(Merge(road[i].start,road[i].end)){
num++;
cost+=road[i].value;
}
if(num==N-) break;
}
if(num!=N-) return -; //不能产生最小生成树
else return cost;
}
int main()
{
int n;
//freopen("input.txt", "r", stdin);
while(scanf("%d", &n) != EOF)
{
if(n == )
break;
for(int i = ; i < n; i++)
node[i] = i;
char s, e;
int num, cost, k = ;
for(int i = ; i < n-; i++)
{
cin >> s >> num;
for(int j = ; j < num; j++, k++)
{
cin >> e >> cost;
road[k].start = s - 'A';
road[k].end = e - 'A';
road[k].value = cost;
}
}
sort(road, road+k, cmp);
int ret = Kruskal(n, k);
printf("%d\n", ret);
}
return ;
}

kruskal算法求最小生成树(jungle roads的kruskal解法)的更多相关文章

  1. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  2. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  3. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  4. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  5. Kruskal算法求最小生成树

    Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...

  6. 859. Kruskal算法求最小生成树(模板)

    给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...

  7. Kruskal算法求最小生成树 笔记与思路整理

    整理一下前一段时间的最小生成树的算法.(其实是刚弄明白 Kruskal其实算是一种贪心算法.先将边按权值排序,每次选一条没选过的权值最小边加入树,若加入后成环就跳过. 先贴张图做个示例. (可视化均来 ...

  8. Kruskal算法求最小生成树(POJ2485)

    题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...

  9. AcWing 859. Kruskal算法求最小生成树 稠密图

    //稠密图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...

随机推荐

  1. 用C#实现生成PDF文档

    using System; using System.IO; using System.Text; using System.Collections; namespace PDFGenerator { ...

  2. asp.net textbox控件基础

    asp.net有两种控件,一种是html控件,一种是asp控件,在说textbox控件之前,先看看按钮的两个命令oncommand和onclick.每次点击按钮后,都会提交命令,但是程序会首先执行Pa ...

  3. 此操作只能由 SQL Server 中拥有配置数据库读取权限的用户在已加入到某个服务器场的计算机上执行

    错误提示:此操作只能由 SQL Server 中拥有配置数据库读取权限的用户在已加入到某个服务器场的计算机上执行.若要将此服务器连接到服务器场,请使用 SharePoint 产品配置向导,该向导可从 ...

  4. oracle update语句的几点写法

    update两表关联的写法包括字查询 1.update t2 set parentid=(select ownerid from t1 where t1.id=t2.id); 2. update tb ...

  5. CRM后期修改实体,新增货币类型字段 需要注意的问题

    货币类型字段新增 需要处理历史数据 否则编辑会报错 提示如果货币字段中存在值,则需要指定币种,请选择币种,然后重试 编辑时货币字段不显示¥符号.新增正常.第一次编辑提示错误保存后再编辑也正常.不是JS ...

  6. OC 实现多选参数

    在iOS的开发过程中有许多方法都是有可选参数的,例如: + (instancetype)arrayWithObjects:(ObjectType)firstObj, ... NS_REQUIRES_N ...

  7. DEV控件自定义排序实现

    一般的控件或者组件都支持按照某一列进行排序.但是,这种排序是根据数据源里的数据默认按照降序或升序排序的,同时这样的排序与字段的类型有关. 假设现在字段的类型是字符串类型 ,但是,存储的数据时数字加一些 ...

  8. java 多线程学习(一)

    public class ThreadA extends Thread { ; public ThreadA() { super("ThreadID:" + (++threadID ...

  9. leetcode Remove Duplicates from Sorted Array python

    class Solution(object): def removeDuplicates(self,nums): if len(nums) <= 0: return 0 j=0 for i in ...

  10. jQuery 1.9不支持$.browser 怎么判断浏览器类型和版本

    $.browser.mozilla = /firefox/.test(navigator.userAgent.toLowerCase());$.browser.webkit = /webkit/.te ...