数学实在是差到不行了……

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
#define LL __int64
const LL maxn=1001;
LL e[maxn],t;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
LL euler_phi(LL n)//求单个欧拉函数
{
LL m=(LL)sqrt(n+0.5);
LL i,ans=n;
for(i=2;i<=m;i++)
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)n/=i;
}
if(n>1)ans=ans/n*(n-1);
return ans;
}
void find(LL n)//找出所有因子
{
LL m=(LL)sqrt(n+0.5);
for(LL i=1;i<m;i++)
if(n%i==0){e[t++]=i;e[t++]=n/i;}
if(m*m==n)e[t++]=m;
}
LL pow_mod(LL a,LL b,LL mod)//快速幂
{
LL s=1;
while(b)
{
if(b&1)
s=(s*a)%mod;
a=(a*a)%mod;
b=b>>1;
}
return s;
}
int main()
{
LL a,x,y;
while(cin>>x>>y>>a)
{
LL m,phi,i;
if(y==0){cout<<"1"<<endl;continue;}
m=a/gcd(y/(x-1),a);
if(gcd(m,x)!=1){cout<<"Impossible!"<<endl;continue;}//不互质,则x^k%m必定是gcd(m,x)的倍数
phi=euler_phi(m);
t=0;
find(phi);
sort(e,e+t);
for(i=0;i<t;i++)
{
if(pow_mod(x,e[i],m)==1)
{
cout<<e[i]<<endl;
break;
}
}
}
return 0;
}
/*
euler_phi(i),欧拉函数,表示求不大于i且与i互质的正整数个数。 本题递推公式化简下可得到通项公式:ak=a0+Y/(X-1)*(X^k-1);后半部分是等比数列的和。
现在求ak%a0=0,即Y/(X-1)*(X^k-1)%a0==0,令m=a0/gcd(Y/(X-1),a0),则可推到求最小的k使得
(X^k-1)%m==0,即X^k==1(mod m).
根据欧拉定理得X^euler_phi(m)==1(mod m).(X与m互质)
又由抽屉原理可知,X^k的余数必定是根据euler_phi(m)的某个因子为循环节循环的。
所以求出最小的因子k使得X^k%m==1,即为答案
*/

HDU 3307 Description has only two Sentences的更多相关文章

  1. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  2. Description has only two Sentences(欧拉定理 +快速幂+分解质因数)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...

  3. hdu 3307(欧拉函数+好题)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  4. Description has only two Sentences(hdu3307)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  5. hdu 3307 简单的指数循环节

    #include<stdio.h>#include<string.h>#include<algorithm>#define LL __int64using name ...

  6. HDU题解索引

    HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsu ...

  7. [SinGuLaRiTy] 数论题目复习

    [SinGuLaRiTy-1020] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 1464] Hankson 题目描述 H ...

  8. hdu3307 欧拉函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3307 Description has only two Sentences Time Limit: 3 ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. MATLAB中求矩阵非零元的坐标

    MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a> ...

  2. 错误:类Byte是公共的,应在名为Byte.java 的文件中声明public class Byte{}一个错误

      解决:文件名是xyz,那你的这个类名也应该是xyz.

  3. python 调用hive查询实现类似存储过程

    需求:数据仓库中所有表的定义结构保存到新的文件中,保存后类似下面数据,重复的数据只保留7月份即可 ****************ods_log_info*****************lid st ...

  4. apache-tomcat-7 设置最大上传.war文件大小[zhuan]

    在利用tomcat自带的主机管理页面进行WAR包部署的时候,提示文件太大,无法上传.   解决方案: 找到 /usr/local/apache-tomcat7/webapps/manager/WEB- ...

  5. Ini文件操作类

    /// <summary> /// Ini文件操作类 /// </summary> public class Ini { // 声明INI文件的写操作函数 WritePriva ...

  6. BZOJ 3870: Our happy ending( 状压dp )

    dp(i, s)表示考虑了前i个数后, 能取到的数的集合为s时的方案数.对于1~min(L, K)枚举更新, 剩下的直接乘就好了. 复杂度O(T*K*2^N)...好像有点大, 但是可以AC.... ...

  7. 使用Docker官方的Django包【转】

    官方Django docker,并没有安装Django 所以需要 在requirements.txt中配置Django 具体安装流程可以参考:http://www.logme.cn/blog/51/u ...

  8. Java基础知识总结(二)

    &和&&的区别: 按位与:a&b是把a和b都转换成二进制数后逐位进行与的运算.若两数字的某位都为1,则该位的运算结果才为1.运算的最终结果是数字. 逻辑与:a& ...

  9. html+css基础

    完整的HTML结构 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...

  10. python基础学习笔记1

    一.字符串: 1.不可变性.分片赋值对于字符串是不合法的. 2.字符串格式化 % eg: print 'The price is: %d' % 30 print 'The price is: %.2f ...