数学实在是差到不行了……

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
#define LL __int64
const LL maxn=1001;
LL e[maxn],t;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
LL euler_phi(LL n)//求单个欧拉函数
{
LL m=(LL)sqrt(n+0.5);
LL i,ans=n;
for(i=2;i<=m;i++)
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)n/=i;
}
if(n>1)ans=ans/n*(n-1);
return ans;
}
void find(LL n)//找出所有因子
{
LL m=(LL)sqrt(n+0.5);
for(LL i=1;i<m;i++)
if(n%i==0){e[t++]=i;e[t++]=n/i;}
if(m*m==n)e[t++]=m;
}
LL pow_mod(LL a,LL b,LL mod)//快速幂
{
LL s=1;
while(b)
{
if(b&1)
s=(s*a)%mod;
a=(a*a)%mod;
b=b>>1;
}
return s;
}
int main()
{
LL a,x,y;
while(cin>>x>>y>>a)
{
LL m,phi,i;
if(y==0){cout<<"1"<<endl;continue;}
m=a/gcd(y/(x-1),a);
if(gcd(m,x)!=1){cout<<"Impossible!"<<endl;continue;}//不互质,则x^k%m必定是gcd(m,x)的倍数
phi=euler_phi(m);
t=0;
find(phi);
sort(e,e+t);
for(i=0;i<t;i++)
{
if(pow_mod(x,e[i],m)==1)
{
cout<<e[i]<<endl;
break;
}
}
}
return 0;
}
/*
euler_phi(i),欧拉函数,表示求不大于i且与i互质的正整数个数。 本题递推公式化简下可得到通项公式:ak=a0+Y/(X-1)*(X^k-1);后半部分是等比数列的和。
现在求ak%a0=0,即Y/(X-1)*(X^k-1)%a0==0,令m=a0/gcd(Y/(X-1),a0),则可推到求最小的k使得
(X^k-1)%m==0,即X^k==1(mod m).
根据欧拉定理得X^euler_phi(m)==1(mod m).(X与m互质)
又由抽屉原理可知,X^k的余数必定是根据euler_phi(m)的某个因子为循环节循环的。
所以求出最小的因子k使得X^k%m==1,即为答案
*/

HDU 3307 Description has only two Sentences的更多相关文章

  1. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  2. Description has only two Sentences(欧拉定理 +快速幂+分解质因数)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...

  3. hdu 3307(欧拉函数+好题)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  4. Description has only two Sentences(hdu3307)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  5. hdu 3307 简单的指数循环节

    #include<stdio.h>#include<string.h>#include<algorithm>#define LL __int64using name ...

  6. HDU题解索引

    HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsu ...

  7. [SinGuLaRiTy] 数论题目复习

    [SinGuLaRiTy-1020] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 1464] Hankson 题目描述 H ...

  8. hdu3307 欧拉函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3307 Description has only two Sentences Time Limit: 3 ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. Ubuntu的快捷键

    正如大家都知道的那样,Ubuntu的终端的Terminal能快捷的操作该linux系统,减少鼠标的使用.(vim党,尽量避免使用鼠标) 在Ubuntu中,终端的快捷键为(大小写无关的): Ctrl + ...

  2. shell中常用的特殊字符

    (1) * 代表0到无穷个任意字符 (2)?代表任意一个字符 (3)代表括号内任意一个字符 (4)[ - ] 代表一个范围中的任意一个字符 如[0-9] 即是代表0-9之间的一个数 (5)[^] 反向 ...

  3. 从零开始PHP学习 - 第三天

    写这个系列文章主要是为了督促自己  每天定时 定量消化一些知识! 同时也为了让需要的人 学到点啥~! 本人技术实在不高!本文中可能会有错误!希望大家发现后能提醒一下我和大家! 偷偷说下 本教程最后的目 ...

  4. Docker和DevOps是找工作必备技能

    根据最近的IT Jobs Watch数据,涉及Docker技术的的工作角色上升了317名次,排在500个最受追捧的IT技能第二位.无独有偶,从Rackspace最近的研究表明,Docker和DevOp ...

  5. spring util命名空间

    在spring的配置文件中util命名空间类似于java.util包类对应,util命名空间提供了集合相关的配置,在使用命名空间前要导入util命名空间,如下: util命名空间引入 <bean ...

  6. “-Xmx1024m -Xms1024m -Xmn512m -Xss256k”——Java运行参数(转)

    JVM的堆的内存, 是通过下面面两个参数控制的 -Xms 最小堆的大小, 也就是当你的虚拟机启动后, 就会分配这么大的堆内存给你 -Xmx 是最大堆的大小 当最小堆占满后,会尝试进行GC,如果GC之后 ...

  7. Zepto Api参考

    zepto API参考 简介 Zepto是一个轻量级的针对现代高级浏览器的JavaScript库, 它与jquery有着类似的api. 如果你会用jquery,那么你也会用zepto. 设计目的 ze ...

  8. Debug目录下没有.exe文件

    记一下小笔记: VC6.0设置.exe文件的输出路径: Project->Settings->Link Category选择"General" 在Output file ...

  9. 线性规划问题的matlab求解

    函数:[x, fval] = linprog(f, A, b, Aeq, Beq, LB, UB) 返回的x:是一个向量——在取得目标函数最小时各个xi的取值: 返回的fval:目标函数的最小值: 参 ...

  10. 今天研究了下webservice 终于OK了

    今天研究了下webservice 终于OK了,所以把它写到自己的博客来,因为网上说的都很复杂     而在这里,我会很简单的说明,一看就懂     首先在进行webservice  一定要下载包    ...