Description

Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer John for L (1 <= L <= 100,000,000) minutes, during which time she wants to watch movies continuously. She has N (1 <= N <= 20) movies to choose from, each of which has a certain duration and a set of showtimes during the day. Bessie may enter and exit a movie at any time during one if its showtimes, but she does not want to ever visit the same movie twice, and she cannot switch to another showtime of the same movie that overlaps the current showtime. Help Bessie by determining if it is possible for her to achieve her goal of watching movies continuously from time 0 through time L. If it is, determine the minimum number of movies she needs to see to achieve this goal (Bessie gets confused with plot lines if she watches too many movies).

PoPoQQQ要在电影院里呆L分钟,这段时间他要看小型电影度过。电影一共N部,每部都播放于若干段可能重叠的区间,PoPoQQQ决不会看同一部电影两次。现在问他要看最少几部电影才能度过这段时间? 注:必须看电影才能在电影院里呆着,同时一场电影可以在其播放区间内任意时间入场出场。

Input

The first line of input contains N and L. The next N lines each describe a movie. They begin with its integer duration, D (1 <= D <= L) and the number of showtimes, C (1 <= C <= 1000).

The remaining C integers on the same line are each in the range 0..L, and give the starting time of one of the showings of the movie.

Showtimes are distinct, in the range 0..L, and given in increasing order.

Output

A single integer indicating the minimum number of movies that Bessieneeds to see to achieve her goal. If this is impossible output -1 instead.

Sample Input

4 100

50 3 15 30 55

40 2 0 65

30 2 20 90

20 1 0

Sample Output

3


这题我们设f[sta]代表已看的电影集合为sta,所能待到的最长时间。转移的时候枚举一个没有看过的电影,找到最近的开始时间,直接转移即可。

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
#define lowbit(x) ((x)&(-x))
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e3;
int len[25],cnt[25];
int A[25][N+10],f[(1<<21)+10];
int find(int x,int i){//二分开始时间
int l=0,r=cnt[i],res=0;
while (l<=r){
int mid=(l+r)>>1;
if (x<A[i][mid]) r=mid-1;
else l=mid+1,res=mid;
}
return res;
}
int main(){
int n=read(),L=read(),Ans=inf;
for (int i=1;i<=n;i++){
len[i]=read(),cnt[i]=read();
for (int j=1;j<=cnt[i];j++) A[i][j]=read();
}
memset(f,255,sizeof(f));
f[0]=0;
for (int sta=0;sta<1<<n;sta++){
if (f[sta]==-1) continue;
if (f[sta]>=L){//统计答案
int res=0;
for (int s=sta;s;s-=lowbit(s)) res++;
Ans=min(Ans,res);
}
for (int i=1;i<=n;i++){
if (!(sta&(1<<(i-1)))){
int k=find(f[sta],i);
if (!k) continue;
f[sta|(1<<(i-1))]=max(f[sta|(1<<(i-1))],A[i][k]+len[i]);
}
}
}
printf("%d\n",Ans==inf?-1:Ans);
return 0;
}

[Usaco2015 Jan]Moovie Mooving的更多相关文章

  1. BZOJ3886 : [Usaco2015 Jan]Moovie Mooving

    f[i]表示用i集合内的电影可以达到的最长时间 f[i]向f[i|(1<<j)]更新,此时的时间为第j部电影在f[i]前的最晚上映时间 先排序一遍离散化后用前缀最大值解决 时间复杂度$O( ...

  2. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  3. 3890: [Usaco2015 Jan]Meeting Time( dp )

    简单的拓扑图dp.. A(i, j), B(i, j) 表示从点 i 长度为 j 的两种路径是否存在. 用bitset就行了 时间复杂度O(m) --------------------------- ...

  4. [USACO15JAN]电影移动Moovie Mooving

    [USACO15JAN]电影移动Moovie Mooving 时间限制: 2 Sec  内存限制: 128 MB 题目描述 Bessie is out at the movies. Being mis ...

  5. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  6. BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*

    BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...

  7. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...

  8. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  9. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

随机推荐

  1. noip模拟赛 终末

    分析:举个例子就能发现:偶数位上的数都必须是0,奇数位上的数可以取0~k-1,这就是一个标准的数位dp了. 这编译器......数组越界了竟然不报错. #include <cstdio> ...

  2. 2017年12月14日 一个Java开发的Python之路----------------(二)

    说一个收获最大的,就是这个关闭流对象 之前写java读取文件的时候,最后往往要关闭流对象,以前我一直不明白,为什么,我不使用.close()方法,文件也可以读取成功,总感觉没有什么意义 原来是因为,这 ...

  3. Core java for impatient 笔记

    类比c++来学习! 1.在java 中变量不持有对象,变量持有的是对象的引用,可以把变量看做c++中的只能指针,自动管理内存 需要手动初始化(否则就是空指针!) 2.final 相当于c++中的con ...

  4. Java并发包——线程池

    Java并发包——线程池 摘要:本文主要学习了Java并发包中的线程池. 部分内容来自以下博客: https://www.cnblogs.com/dolphin0520/p/3932921.html ...

  5. SQL PATINDEX检索

    语法格式:PATINDEX ( '%pattern%' , expression ) 返回pattern字符串在表达式expression里第一次出现的位置,起始值从1开始算. pattern字符串在 ...

  6. storm ——Understanding the Parallelism of a Storm Topology

    http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/ 这篇文章好 ...

  7. CentOS 5.11开启VNC Service

    1.     #yum install vncserver 2.     #vncpasswd       此密码将成为vnc的login password          password:    ...

  8. UG如何把语言改成中文,UG如何把界面语言改成中文

    1 高级系统设置,高级,新建一个用户变量(变量名为lang,变量值为chs)   2 高级系统设置,高级,环境变量,系统变量中,查看变量名为UGII_LANG的值是否为simpl_chinese,如果 ...

  9. 编程算法 - 两个升序列的同样元素 代码(C)

    两个升序列的同样元素 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 两个升序列的同样元素, 须要使用两个指针, 依次遍历, 假设相等输出, 假设小于或 ...

  10. python 简单连接mysql数据库

    1. 安装pymysql 库 pip install pymysql 2.实例本地连接mysql库 #!/usr/bin/python # encoding: utf-8 ""&q ...