一.深度卷积神经网络学习笔记(一)

1. 这篇文章以贾清扬的ppt说明了卷积的实质,更说明了卷积输出图像大小应该为:

假设输入图像尺寸为W,卷积核尺寸为F,步幅(stride)为S(卷积核移动的步幅),Padding使用P(用于填充输入图像的边界,一般填充0),那么经过该卷积层后输出的图像尺寸为(W-F+2P)/S+1。

2.它写出为什么会用padding?卷积核大小该如何确定?stride该如何确定?

二. Caffe的卷积原理

1.这篇文章把卷积的过程写得非常形象化,用简单的例子用明白了卷积过程在caffe写代码的时候是怎么实现的。

2.它还写了卷积后输出图像大小N为:

N=[((image_h + 2*pad_h – kernel_h)/stride_h)+ 1]*[((image_w +2*pad_w – kernel_w)/stride_w) + 1]  (结果向上取整)

image_h:输入图像的高度

image_w:输入图像的宽度

pad_h:在输入图像的高度方向两边各增加pad_h个单位长度(因为有两边,所以乘以2)

pad_w:在输入图像的宽度方向两边各增加pad_w个单位长度(因为有两边,所以乘以2)

kernel_h:卷积核的高度

kernel_w:卷积核的宽度

stride_h:高度方向的滑动步长;

stride_w:宽度方向的滑动步长。

因此,N为输出图像大小的长宽乘积,也是卷积核在输入图像上滑动可截取的最大特征数。

K=k*k,表示利用卷积核大小的框在输入图像上滑动所截取的数据大小,与卷积核大小一样大。

上面是一般情况下的计算,在tensorflow中根据padding时参数选择不同,卷积输出图像的计算方式也可能不同,见:Tensorflow中卷积的padding操作

3.池化大小的计算与卷积类似:

N=[((image_h + 2*pad_h – kernel_h)/stride_h)+ 1]*[((image_w +2*pad_w – kernel_w)/stride_w )+ 1]  (结果向上取整)

image_h:输入图像的高度

image_w:输入图像的宽度

pad_h:在输入图像的高度方向两边各增加pad_h个单位长度(因为有两边,所以乘以2)

pad_w:在输入图像的宽度方向两边各增加pad_w个单位长度(因为有两边,所以乘以2)

kernel_h:池化区域的高度

kernel_w:区域的宽度

stride_h:高度方向的滑动步长;

stride_w:宽度方向的滑动步长。

因此,N为输出图像大小的长宽乘积,也是卷积核在输入图像上滑动可截取的最大特征数。

三.卷积时参数的理解

卷积运算时总是有一个参数需要选择,matlab中是shape,python中是border_mode

关于shape选项的说明;

当shape=full时,返回全部二维卷积结果,即返回c的大小为(ma+mb-1)x(na+nb-1)
    shape=same时,返回与a同样大小的卷积中心部分
    shape=valid时,不考虑边界补零,即只要有边界补出的零参与运算的都舍去,返回c的大小为(ma-mb+1)x(na-nb+1)

Deep Learning 30: 卷积理解的更多相关文章

  1. Coursera Deep Learning笔记 卷积神经网络基础

    参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x10 ...

  2. 通过Visualizing Representations来理解Deep Learning、Neural network、以及输入样本自身的高维空间结构

    catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visua ...

  3. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  4. Deep learning:四十九(RNN-RBM简单理解)

    前言: 本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调 ...

  5. Deep learning:四十六(DropConnect简单理解)

    和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单 ...

  6. Deep learning:四十二(Denoise Autoencoder简单理解)

    前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...

  7. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  8. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

    https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一 ...

  9. Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一

    Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...

随机推荐

  1. C第10章-----通过引用传递

    #include <stdio.h> #include <math.h> void metersToFeetAndInches(double meters,unsigned i ...

  2. POJ 1273 Drainage Ditches【图论,网络流】

    就是普通的网络流问题,想试试新学的dinic算法,这个算法暑假就开始看国家集训队论文了,之前一直都只用没效率的EK算法,真正学会这个算法还是开学后白书上的描述:dinic算法就是不断用BFS构建层次图 ...

  3. 【并查集】F.find the most comfortable road

    https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/F [题意] 给定n个城市和m条带权边,q次查询,问某两个城市之间的所有路径中最大 ...

  4. bzoj 1703 [Usaco2007 奶牛排名 传递闭包

    [Usaco2007 Mar]Ranking the Cows 奶牛排名 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 504  Solved: 343[ ...

  5. make only output error/warning message( 编译时,只输出错误信息和警告信息)

    make > /dev/null 这样,正常的信息被重定向输出到/dev/null,错误和警告信息会输出到标准错误设备(standard error,相对于标准输入/输出设备来说).

  6. 【搜索引擎】SOLR VS Elasticsearch(2019技术选型参考)

    SOLR是什么 (官方的解释) Solr是基于Apache Lucene构建的流行的.快速的.开源的企业搜索平台. Solr也是高度可靠.可伸缩和容错的,提供分布式索引.复制和负载平衡查询.自动故障转 ...

  7. java开发面试大全刷题整理

    题目源自Java团长公众号,内容个人整理,来源于各大博客,未经允许,不准摘抄,仅供分享,不做商业使用. 本分享多数为浅层知识体系,更为底层的还请自行多写写代码,若有不对之处,望广大的人才指点,不喜勿喷 ...

  8. Unity从实践中学习(1)

    首先在实际中unity的开发之中快捷键应该是相当重要的一个部分,这里先引用csdn的一个博客,https://blog.csdn.net/qq_34552886/article/details/697 ...

  9. 洛谷 P2862 [USACO06JAN]把牛Corral the Cows

    P2862 [USACO06JAN]把牛Corral the Cows 题目描述 Farmer John wishes to build a corral for his cows. Being fi ...

  10. Java日志框架-Logback手册中文版以及官方配置文档教程

    Logback手册中文版:(链接: https://pan.baidu.com/s/1bpMyasR 密码: 6u5c),虽然版本有点旧,但是大体意思差不多,先用中文版了解个大概,然后一切最新的配置以 ...