[bzoj1563][NOI2009]诗人小G(决策单调性优化)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563
分析:
首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i]-i-L+1|^P} j=0..i-1
这种1D/1D的动态规划要优化肯定只有决策单调性优化,打个表发现的确如此,然后就愉快的O(nlogn)了
[bzoj1563][NOI2009]诗人小G(决策单调性优化)的更多相关文章
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- C语言小项目-基于TCP协议和SOCKET编程的网络通信系统
1.1 功能结构图 网络通信系统一共由4个模块组成,分别是点对点客户端.点对点服务端.服务器中转服务端.服务器中转客户端.这4个模块是成对使用的,点对点客户端和点对点服务端一起使用,服务器中转服务 ...
- 【知识总结】多项式全家桶(三)(任意模数NTT)
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...
- 树形DP Gym 100496H House of Representatives
题目传送门 /* 题意:寻找一个根节点,求min f(u) = ∑ρ(v, u) * p(v).ρ(v, u)是u到v的距离,p(v)是v点的权值 树形DP:先从1出发遍历第一次,sum[u]计算u到 ...
- 最大流增广路(KM算法) HDOJ 2255 奔小康赚大钱
题目传送门 /* KM:裸题第一道,好像就是hungary的升级版,不好理解,写点注释 KM算法用来解决最大权匹配问题: 在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接Xi,Yj有权w(i ...
- Jsp四个作用域page、request、session和application的区别
1.简单说 page指当前页面.在一个jsp页面里有效 2.request 指从http请求到服务器处理结束,返回响应的整个过程.在这个过程中使用forward方式跳转多个jsp.在这些页面里你都可 ...
- 页面置换算法-LRU(Least Recently Used)c++实现
最近最久未使用(LRU)置换算法 #include <iostream> #include <cstdio> #include <cstring> #include ...
- 分布式爬虫系统设计、实现与实战:爬取京东、苏宁易购全网手机商品数据+MySQL、HBase存储
http://blog.51cto.com/xpleaf/2093952 1 概述 在不用爬虫框架的情况,经过多方学习,尝试实现了一个分布式爬虫系统,并且可以将数据保存到不同地方,类似MySQL.HB ...
- [ POI 2012 ] Letters
\(\\\) \(Description\) 给出两个长度为 \(N\) 的字符串\(S_1,S_2\),且保证两个字符串中每一个字符出现次数相同. 现在一次操作可以交换相邻的两个字符,问将 \(S_ ...
- jQuery中$this和$(this)的区别
要写一个点击弹窗任意地方,关闭弹窗.点击事件写标签在元素上 onclick = closepop(this),这时候很容易搞不清楚怎么去获取当前元素 function closepop(e){ va ...
- oracle 手动配置服务器端和客户端
1.oracle 服务器端配置 将oracle安装完成之后,在Net Configuration Assistant配置 1.监听程序配置 先找到Net Configuration Assistant ...