洛谷 P2763 试题库问题【最大流】
s向所有类别属性连流量为当前类别属性需要的个数的边,所有题目向t连流量为1的边(表示只能选一次),所有属性向含有它的题连容量为1的边。跑一变dinic,结果小于m则无解,否则看每一个类别属性连出去的题目的边是否满流,满流代表这个属性选择这道题
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,h[N],cnt=1,s,t,le[N],sum;
bool vs[N],vt[N];
string c;
struct qwe
{
int ne,to,va;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||f==0)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
m=read(),n=read();
s=0,t=m+n+1;
for(int i=1;i<=m;i++)
{
int x=read();
sum+=x;
ins(s,i,x);
}
for(int i=1;i<=n;i++)
{
int p=read();
for(int j=1;j<=p;j++)
{
int x=read();
ins(x,i+m,1);
}
ins(i+m,t,1);
}
if(dinic()<sum)
{
puts("No Solution!");
return 0;
}
for(int u=1;u<=m;u++)
{
printf("%d: ",u);
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=s&&!e[i].va)
printf("%d ",e[i].to-m);
puts("");
}
return 0;
}
洛谷 P2763 试题库问题【最大流】的更多相关文章
- 洛谷P2763 试题库问题(最大流)
题意 $n$道试题,每道题有多种类别属性 抽取$m$道题组成试卷,要求包含指定的类型 输出方案 Sol 又是一道zz网络流 我的构图长这样,$k_i$表示第$i$道试题需要的数量 #include&l ...
- 洛谷 P2763 试题库问题(网络流24题之一)
题目描述 «问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法. ...
- 洛谷P2763 试题库问题(最大流)
传送门 网络流界的一股清流啊……终于没那么变态了…… 考虑一下怎么建图.对于每一个类型,我们从$S$向他连边,容量为它所需的题数,表明它要可以有这么多题,对于每一道题目,我们从它对应的类型向他连边,容 ...
- [洛谷P2763]试题库问题
题目大意:有 $k$ 种类型和 $n$ 个题目,每个题目会适应部分类型,第$i$个类型需要$s_i$的题,一道题只能满足一种类型,现要求出满足所有类型的题目的方案 题解:看到匹配,想到网络流,源点向试 ...
- 洛谷 [P2763]试题库问题
非常舒适的最大流 非常显然的建图方法,然而因为数组开小卡了很长时间 #include <iostream> #include <cstdio> #include <alg ...
- P2763 试题库问题(dinic)
P2763 试题库问题 dinic 搞个虚拟源点和汇点,瞎建建边就好辣. 偷张图↓↓ 如果没满流就是无解辣 输出方案咋办呢? 枚举每种类型,蓝后枚举它们的边 如果该边被使用了(通过判断反向边的流量), ...
- 【题解】 P2763 试题库问题(网络流)
P2763 试题库问题 考虑一个试题要被加入进答案的集合有什么条件? 是某种类型 只算作一次 就这两种且的限制,所以我们用串联的方式连接"类型点"和"作用点". ...
- [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码
[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...
- 网络流问题 P2763 试题库问题
题目描述 «问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法. ...
随机推荐
- poj1330+hdu2586 LCA离线算法
整整花了一天学习了LCA,tarjan的离线算法,就切了2个题. 第一题,给一棵树,一次查询,求LCA.2DFS+并查集,利用深度优先的特点,回溯的时候U和U的子孙的LCA是U,U和U的兄弟结点的子孙 ...
- 有向图欧拉回路个数 BEST定理
有向图欧拉回路个数 BZOJ 3659 但是没有这道题了 直接贴一个别人的板子吧 欧拉回路:存在一条路径经过所有的边刚好1次 有向图欧拉回路存在充要条件:①图连通:②对于所有点都满足出度=入度 BE ...
- 【Java源码】集合类-优先队列PriorityQueue
一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...
- Populating Next Right Pointers in Each Node (DFS,没想到)
Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...
- IDEA下使用protobuf2(java)
目录 一.介绍 二.特点 三.结构 四.选择版本 五.Intellij IDEA中使用Protobuf 1.下载个protoc.exe 2.编辑个.proto文件 3.将.proto文件转成Java类 ...
- Java函数式接口Consumer
Consumer是java8提供的函数式接口之一,意思为消费者,接受参数而不返回值 void accept(T t); default Consumer<T> andThen(Consum ...
- vue-cli中process.env配置以及打包本地运行或者线上运行配置
我们知道打包默认npm run build,可是打包后点击dist文件中index.html一片空白.问题在于路径问题.我们在工程文件的最外层增加文件.env.production这个文件就是这么奇怪 ...
- Android网络通信之Socket
在移动APP开发中.网络通信数据传输是必定存在的.移动APP离开了网络通信数据传输的功能方式,就好比一潭死水,永远都 是原来的样子. 提到网络通信传输数据.首先出如今程序猿脑海中的是HTTP协议传输, ...
- window.location.hashs属性介绍
长话短说. location是javascript里边管理地址栏的内置对象.比方location.href就管理页面的url,用location.href=url就能够直接将页面重定向url. 而lo ...
- Linux环境搭建:1. 安装VMware
我家淘宝店,主要协助同学做毕业设计:https://shop104550034.taobao.com/?spm=2013.1.1000126.d21.pPCzDZ 1. 下载VMware 能够到我的3 ...