Floyd 判断连通性

d[i][j]仅表示i,j之间是否联通

for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=dis[i][j]||(dis[i][k]&&dis[k][j]);

有向图和无向图都适用

当然了,也可以DFS判断连通性

裸题:

P2419 [USACO08JAN]牛大赛Cow Contest

题目背景

[Usaco2008 Jan]

题目描述

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1..N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。

输入输出格式

输入格式:

第1行: 2个用空格隔开的整数:N 和 M

第2..M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为 胜者)

输出格式:

第1行: 输出1个整数,表示排名可以确定的奶牛的数目

输入输出样例

输入样例#1: 复制

5 5
4 3
4 2
3 2
1 2
2 5
输出样例#1: 复制

2

说明

输出说明:

编号为2的奶牛输给了编号为1、3、4的奶牛,也就是说她的水平比这3头奶

牛都差。而编号为5的奶牛又输在了她的手下,也就是说,她的水平比编号为5的

奶牛强一些。于是,编号为2的奶牛的排名必然为第4,编号为5的奶牛的水平必

然最差。其他3头奶牛的排名仍无法确定。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<bits/stdc++.h>
using namespace std; void read(int &x){
char ch=getchar();x=;int flg=;
if(ch=='-') flg=-;
for(;ch<''||ch>'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
x*=flg;
}
int n,m,d[][],ans;
int main()
{
read(n);read(m);
for(int i=;i<=m;i++){
int u,v;
read(u);read(v);
d[u][v]=;
}for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
d[i][j]=d[i][j]|d[i][k]&d[k][j];
}
}
}
for(int i=;i<=n;i++){
int tp=;
for(int j=;j<=n;j++){
if(d[i][j]==||d[j][i]==) ++tp;
}if(tp==n-) ++ans;
}cout<<ans;
return ;
}

最小环问题

最小环就是指在一张图中找出一个环,使得这个环上的各条边的权值之和最小。在Floyed的同时,可以顺便算出最小环。 
记两点间的最短路为dis[i][j],g[i][j]为边< i,j > 的权值。

for(int k=;k<=n;k++)
{
for(int i=;<=k-;i++)
for(int j=i+;j<=k-;j++)
answer=min(answer,dis[i][j]+g[j][k]+g[k][i]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}

answer即为这张图的最小环。

一个环中最大的节点为k,与它相连的节点为i,j,这个环的最短长度为g[i][k]+g[k][j]+(i到j的路径中,所有节点编号都小于k的最短路径长度)。 
根据floyed原理,在最外层进行k-1次循环之后dis[i][j]则代表了i到j的路径中,所有结点编号都小于k的最短路径。 
综上所述,该算法一定能找到图中的最小环。

参考博文:https://blog.csdn.net/cax1165/article/details/51811902

https://blog.csdn.net/BroDrinkWater/article/details/62416723

图的连通性问题之连通和最小环——Floyd算法的更多相关文章

  1. timus1004 最小环()Floyd 算法

    通过别人的数据搞了好久才成功,果然还是不够成熟 做题目还是算法不能融会贯通 大意即找出图中至少3个顶点的环,且将环中点按顺序输出 用floyd算法求最小环 因为floyd算法求最短路径是通过中间量k的 ...

  2. 数据结构-图-Java实现:有向图 图存储(邻接矩阵),最小生成树,广度深度遍历,图的连通性,最短路径1

    import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { pro ...

  3. Victoria的舞会2——图的连通性及连通分量

    [Vijos1022]]Victoria的舞会2 Description Victoria是一位颇有成就的艺术家,他因油画作品<我爱北京天安门>闻名于世界.现在,他为了报答帮助他的同行们, ...

  4. POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]

    题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...

  5. poj 3310(并查集判环,图的连通性,树上最长直径路径标记)

    题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径 ...

  6. POJ2513(字典树+图的连通性判断)

    //用map映射TLE,字典树就AC了#include"cstdio" #include"set" using namespace std; ; ;//26个小 ...

  7. 图的连通性问题的小结 (双连通、2-SAT)

    图的连通性问题包括: 1.强连通分量. 2.最小点基和最小权点基. 3.双连通. 4.全局最小割. 5.2-SAT 一.强连通分量 强连通分量很少单独出题,一般都是把求强连通分量作为缩点工具. 有三种 ...

  8. 2018年牛客多校寒假 第四场 F (call to your teacher) (图的连通性)

    题目链接 传送门:https://ac.nowcoder.com/acm/contest/76/F 思路: 题目的意思就是判断图的连通性可以用可达性矩阵来求,至于图的存储可以用邻接矩阵来储存,求出来可 ...

  9. 最小环-Floyd

    floyd求最小环 在Floyd的同时,顺便算出最小环. Floyd算法 :k<=n:k++) { :i<k:i++) :j<k:j++) if(d[i][j]+m[i][k]+m[ ...

随机推荐

  1. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  2. NYOJ 330 一个简单的数学题【数学题】

    /* 题目大意:求解1/n; 解题思路:写一个输出小数的算法 关键点:怎样处理小数点循环输出 解题人:lingnichong 解题时间:2014-10-18 09:04:22 解题体会:输出小数的算法 ...

  3. ALSA声卡驱动中的DAPM详解之三:如何定义各种widget

    上一节中,介绍了DAPM框架中几个重要的数据结构:snd_soc_dapm_widget,snd_soc_dapm_path,snd_soc_dapm_route.其中snd_soc_dapm_pat ...

  4. win32 API函数

    cozy的博文 win32 API函数大全   (2008-03-15 16:28) 分类: 个人日记 1. API之网络函数 WNetAddConnection 创建同一个网络资源的永久性连接 WN ...

  5. electron利用nodejs+移动端技术跨平台桌面应用开发框架——记录下,类似node webkit!

    Build cross platform desktop appswith JavaScript, HTML, and CSS Electron: 1.6.8Node: 7.4.0Chromium:  ...

  6. RDA 升级

    烧录BOOT升级方式: 1.连接 2.烧录BOOT 1)升级“bootrom_raw.bin” 99K,这种升级方式需要Tera Term 工具,按“F5”  U盘升级. 编译的升级文件“RR8503 ...

  7. openStack调试

  8. openstack instance resize to

    Icehouse resize No valid host was found Hi all!! We're currently experimenting an error that's it's ...

  9. 在eclipse中如何在大量项目中查找指定文件(转载)

    转载:http://blog.csdn.net/inowcome/article/details/6699227 在eclipse中如果希望在大量的项目中寻找指定的文件可不是一件轻松的事,还好ecli ...

  10. python中的深拷贝和浅拷贝(面试题)

    一.浅拷贝 定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值. 浅拷贝的特点: 公用一个值: 这两个变量的内存地址一样: 对其中一个变量的值改变,另外一个变量的值也 ...