Solutions to an Equation LightOJ - 1306
Solutions to an Equation LightOJ - 1306
一个基础的扩展欧几里得算法的应用。
解方程ax+by=c时,基本就是先记录下a和b的符号fla和flb(a为正则fla为1,为负则fla为-1,flb相同),然后对a和b取绝对值。求出ax+by=gcd(a,b)的一组解x=ansx,y=ansy,那么只有当c是gcd(a,b)的倍数时原方程才可能有解。设g=gcd(a,b),通解是x=ansx*(c/g)*fla+k*b/g*fla,y=ansy*(c/g)*flb-k*a/g*flb。这里设xa=ansx*(c/g)*fla,xb=b/g*fla,ya=ansy*(c/g)*flb,yb=-(a/g*flb)。
那么这题就是根据通解的式子和x和y的范围去求k的范围,基本操作就是手算一下解不等式。
举例:不等式(x相关):xa+k*xb>=x1,xa+k*xb<=x2
(解一下就会发现第一个式子解出的是k的最小值还是最大值,与xb的符号有关)
理论上不难,但是符号之类的细节实现起来有难度(...)。另外,a为0或b为0或a、b都为0时都需要特判(...)。
错误记录:
未特判0
upd:
以上应该有错。通解应该是x=ansx*fla+k*(b/g)*fla,y=ansy*flb-k*(a/g)*flb
通解就是那个没错的,但是要注意ansx和ansy是ax+by=gcd(a,b)的解,不是原方程的解。
如果有了一组原方程的解,求通解,那么就不要乘c/g
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
LL T,x,y,a,b,c,x1,x2,y11,y2,g;
LL gcd(LL a,LL b)
{
LL t;
while(b!=)
{
t=a;
a=b;
b=t%b;
}
return a;
}
LL exgcd(LL a,LL b,LL& x,LL& y)
{
if(b==)
{
x=;
y=;
return a;
}
else
{
LL t=exgcd(b,a%b,x,y);
LL t1=x;
x=y;
y=t1-a/b*y;
return t;
}
}
int main()
{
LL TT,fla,flb,xa,xb,ya,yb,kl,kr,kl1,kr1;
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld%lld%lld",&a,&b,&c,&x1,&x2,&y11,&y2);
c=-c;
if(a==&&b==)
{
if(c==)
{
printf("Case %lld: %lld\n",TT,max(0ll,(x2-x1+)*(y2-y11+)));
}
else
{
printf("Case %lld: %lld\n",TT,0ll);
}
continue;
}
if(a==)
{
if(c%b==&&(c/b>=y11)&&(c/b<=y2))
printf("Case %lld: %lld\n",TT,x2-x1+);
else
printf("Case %lld: %lld\n",TT,0ll);
continue;
}
if(b==)
{
if(c%a==&&(c/a>=x1)&&(c/a<=x2))
printf("Case %lld: %lld\n",TT,y2-y11+);
else
printf("Case %lld: %lld\n",TT,0ll);
continue;
}
fla=;flb=;
if(a<)
{
a=-a;
fla=-;
}
if(b<)
{
b=-b;
flb=-;
}
g=gcd(a,b);
if(c%g!=)
{
printf("Case %lld: %lld\n",TT,0ll);
continue;
}
exgcd(a,b,x,y);
xa=x*(c/g)*fla;
xb=b/g*fla;
ya=y*(c/g)*flb;
yb=-(a/g*flb);
//x=xa+k*xb,y=ya+k*yb
if(xb>)
{
kl=ceil((double)(x1-xa)/xb);
kr=floor((double)(x2-xa)/xb);
}
else
{
kr=floor((double)(x1-xa)/xb);
kl=ceil((double)(x2-xa)/xb);
}
if(yb>)
{
kl1=ceil((double)(y11-ya)/yb);
kr1=floor((double)(y2-ya)/yb);
}
else
{
kr1=floor((double)(y11-ya)/yb);
kl1=ceil((double)(y2-ya)/yb);
}
//if(kl1>kr1) swap(kl1,kr1);
printf("Case %lld: %lld\n",TT,max(min(kr1,kr)-max(kl1,kl)+,0ll));
}
return ;
}
Solutions to an Equation LightOJ - 1306的更多相关文章
- [lightoj P1306] Solutions to an Equation
[lightoj P1306] Solutions to an Equation You have to find the number of solutions of the following e ...
- 1306 - Solutions to an Equation
1306 - Solutions to an Equation PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Lim ...
- Jordan Lecture Note-6: The Solutions of Nonlinear Equation.
The Solutions of Nonlinear Equation 本文主要介绍几种用于解非线性方程$f(x)=0$的一些方法. (1) Bisection Method. 算法: step 1: ...
- lightoj 1306 - Solutions to an Equation 扩展的欧几里得
思路:看题就知道用扩展的欧几里得算法做!!! 首先我们可以求出ax+by=gcd(a,b)=g的一个组解(x0,y0).而要使ax+by=c有解,必须有c%g==0. 继而可以得到ax+by=c的一个 ...
- LightOJ 1306 - Solutions to an Equation 裸EXGCD
本题是极其裸的EXGCD AX+BY+C=0 给你a b c 和x与y的区间范围,问你整数解有几组 作为EXGCD入门,题目比较简单 主要需要考虑区间范围的向上.向下取整,及正负符号的问题 问题是这正 ...
- (light oj 1306) Solutions to an Equation 扩展欧几里得算法
题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...
- [ACM_数学] Counting Solutions to an Integral Equation (x+2y+2z=n 组合种类)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27938#problem/E 题目大意:Given, n, count the numbe ...
- [LeetCode] Solve the Equation 解方程
Solve a given equation and return the value of x in the form of string "x=#value". The equ ...
- [Swift]LeetCode640. 求解方程 | Solve the Equation
Solve a given equation and return the value of x in the form of string "x=#value". The equ ...
随机推荐
- WTF
WTF ,luna黑色主题比较sublime 还是差点!
- Spark 学习笔记:(二)编程指引(Scala版)
参考: http://spark.apache.org/docs/latest/programming-guide.html 后面懒得翻译了,英文记的,以后复习时再翻. 摘要:每个Spark appl ...
- dubbo配置指南
dubbo配置指南 SLA配置在此完成!Service Layer Agreement ApplicationConfig 应用配置,用于配置当前应用信息,不管该应用是提供者还是消费者. Regist ...
- yum报错File "/usr/bin/yum", line 30 except KeyboardInterrupt, e:
原因:学python的时候,把centos7自带的python2.7改成了python3.6.2.而yum使用的是python2,所以会出现yum报错. 解决方法: 在文件/usr/bin/yum./ ...
- Java面试手写代码题
1.栈实现 2.Iterator实现 3.单例 4.多线和控制(暂停,恢复,停止) 5.生产者消费者
- How to create a List of ValueTuple?
ValueTuple需要通过NuGet安装System.ValueTuple https://docs.microsoft.com/en-us/dotnet/csharp/tuples?view=ne ...
- 计算机学院大学生程序设计竞赛(2015’12)The Magic Tower
The Magic Tower Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- codeforces B. Sereja and Mirroring 解题报告
题目链接:http://codeforces.com/contest/426/problem/B 题目意思:给出一个n * m的矩阵a,需要找出一个最小的矩阵b,它能通过several次的mirror ...
- codeforces 414A A. Mashmokh and Numbers(素数筛)
题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...
- Oracle常用数据库表操作
配置数据库: user:orcl.passward:71911.Hao全局数据库名:orcl..解锁数据库用户名,SCOTT,SYSTEM,SYS, PWD:71911.Hao输入sqlplus, ...