求斐波那契第n项。

[f(n-1) f(n)] *  [0,1] = [f(n) f(n+1)]
[1,1]

由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可。

快速幂本质和普通快速幂一模一样,只是乘法操作换成了矩阵的乘法,可以重载。

//Stay foolish,stay hungry,stay young,stay simple
#include<iostream>
#include<cstring>
using namespace std; const int MOD=1000000007; typedef long long ll; ll n; struct Mat{
ll data[3][3];
Mat(){
memset(data,0,sizeof(data));
}
}; Mat mut(Mat x,Mat y){
Mat ret;
for(int i=1;i<=2;i++){
for(int j=1;j<=2;j++){
for(int k=1;k<=2;k++){
ret.data[i][j]=(ret.data[i][j]+(x.data[i][k]*y.data[k][j])%MOD)%MOD;
}
}
}
return ret;
} Mat Mpow(Mat x,ll t){
Mat ret;
ret.data[1][1]=ret.data[2][2]=1;
while(t){
if(t&1) ret=mut(x,ret);
x=mut(x,x);
t>>=1;
}
return ret;
} int main(){
cin>>n;
Mat o;
o.data[1][1]=o.data[1][2]=o.data[2][1]=1;
o=Mpow(o,n);
cout<<o.data[1][2];
return 0;
}

[LUOGU] P1962 斐波那契数列的更多相关文章

  1. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  2. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  3. 【luogu P1962 斐波那契数列】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...

  4. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  5. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  6. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  7. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  8. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  9. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

随机推荐

  1. 3dmax学习资料记录

    max2015 官方文档 http://help.autodesk.com/view/3DSMAX/2015/CHS/?guid=GUID-D015E335-EFB3-43BF-AB27-C3CB09 ...

  2. python 标准库大全

    python 标准库 文本 string:通用字符串操作 re:正则表达式操作 difflib:差异计算工具 textwrap:文本填充 unicodedata:Unicode字符数据库 string ...

  3. bzoj 4456 [Zjoi2016]旅行者

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4456 题解 分治 设当前work的区间为(x1,y1,x2,y2) 我们将长边分成两半 不妨 ...

  4. SPRING-BOOT系列之SpringBoot快速入门

    今天 , 正式来介绍SpringBoot快速入门 : 可以去如类似 https://docs.spring.io/spring-boot/docs/2.1.0.BUILD-SNAPSHOT/refer ...

  5. poj3204Ikki's Story I - Road Reconstruction(最大流求割边)

    链接 最大流=最小割  这题是求割边集 dinic求出残余网络 两边dfs分别以源点d找到可达点 再以汇点进行d找到可达汇点的点 如果u,v为割边 那么s->u可达 v->t可达 并且为饱 ...

  6. C#基础学习2

    变量与数据类型!

  7. iOS 从相册中拿到 图片名 ,截取后缀,图片名

    //从路径中获得完整的文件名 (带后缀) 对从相册中取出的图片,视频都有效. NSString *fileName = [filePath lastPathComponent]; //获得文件名 (不 ...

  8. iOS 二维码的生成 QREncoder

    生成二维码: 在生成二维码的库中QREncoder最为常见,但是由于中文字符的特殊性,生成中文的时候有时会出现一定的错误,所以建议使用libqrencode,是一个纯C编写的类库. 以libqrenc ...

  9. 如何查看安装的java是32位的,还是64位的

    命令 java -d32 -version 或者 java -d64 -version

  10. Python behave in BDD

    BDD概念 全称 Behavior-driven development 中文 行为驱动开发 概念 是敏捷软件开发技术的一种,鼓励各方人员在一个软件项目里交流合作,包括开发人员.测试人员和非技术人员或 ...