Tensorflow Eager execution and interface
Lecture note 4: Eager execution and interface
Eager execution
Eager execution is (1) a NumPy-like library for numerical computation with support for GPU acceleration and automatic differentiation, and (2) a flexible platform for machine learning research and experimentation. It's available as tf.contrib.eager, starting with version 1.50 of TensorFlow.
- Motivation:
- TensorFlow today: Construct a graph and execute it.
- This is declarative programming. Its benefits include performance and easy translation to other platforms; drawbacks include that declarative programming is non-Pythonic and difficult to debug.
- What if you could execute operations directly?
- Eager execution offers just that: it is an imperative front-end to TensorFlow.
- Key advantages: Eager execution …
- is compatible with Python debugging tools
- pdb.set_trace() to your heart's content!
- provides immediate error reporting
- permits use of Python data structures
- e.g., for structured input
- enables you to use and differentiate through Python control flow
- Enabling eager execution requires two lines of code
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution() # Call this at program start-up
and lets you write code that you can easily execute in a REPL, like this
x = [[2.]] # No need for placeholders!
m = tf.matmul(x, x)
print(m) # No sessions!
# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
For more details, check out lecture slides 04.
Tensorflow Eager execution and interface的更多相关文章
- 独家 | TensorFlow 2.0将把Eager Execution变为默认执行模式,你该转向动态计算图了
机器之心报道 作者:邱陆陆 8 月中旬,谷歌大脑成员 Martin Wicke 在一封公开邮件中宣布,新版本开源框架——TensorFlow 2.0 预览版将在年底之前正式发布.今日,在上海谷歌开发者 ...
- 关于TensorFlow你需要了解的9件事
关于TensorFlow你需要了解的9件事 https://mp.weixin.qq.com/s/cEQAdLnueMEj0OQZtYvcuw 摘要:本文对近期在旧金山举办的谷歌 Cloud Next ...
- [源码解析] TensorFlow 分布式之 ParameterServerStrategy V2
[源码解析] TensorFlow 分布式之 ParameterServerStrategy V2 目录 [源码解析] TensorFlow 分布式之 ParameterServerStrategy ...
- 2018百度之星开发者大赛-paddlepaddle学习
前言 本次比赛赛题是进行人流密度的估计,因为之前看过很多人体姿态估计和目标检测的论文,隐约感觉到可以用到这次比赛上来,所以趁着现在时间比较多,赶紧报名参加了一下比赛,比赛规定用paddlepaddle ...
- [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer
[源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- Distri ...
- TensorFlow tutorial
代码示例来自https://github.com/aymericdamien/TensorFlow-Examples tensorflow先定义运算图,在run的时候才会进行真正的运算. run之前需 ...
- Tensorflow word2vec+manage experiments
Lecture note 5: word2vec + manage experiments Word2vec Most of you are probably already familiar wit ...
- Linear and Logistic Regression in TensorFlow
Linear and Logistic Regression in TensorFlow Graphs and sessions TF Ops: constants, variables, funct ...
- 浅析 TensorFlow Runtime 技术
关于 TF Runtime 的疑问? 什么是TFRT ? TensorFlow Runtime,简称 TFRT,它提供了统一的.可扩展的基础架构层,可以极致地发挥CPU多线程性能,支持全异步编程(无锁 ...
随机推荐
- Ubuntu12.04安装JDK(jdk-6u45-linux-x64.bin)(转载)
首先下载jdk-6u45-linux-x64.bin, 如果是32bit系统下载相应的i386即可. 更改文件权限-> chmod a+x jdk-6u45-linux-x64.bin. 创建目 ...
- Objective-C 继承与类
创建: 2018/01/20 完成: 2018/01/21 更新: 2018/01/22 标题前增加 [Objective-C] 继承的概念 父类与子类 ●继承: 继承其他类 ●父类: 被继承的类 ...
- 堆和栈的区别【以java为例潜入分析】
Java的堆是一个运行时数据区,类的对象从中分配空间,这些对象通过new等指令建立. 堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动 ...
- iPhone各尺寸 app界面设计尺寸规范
ip6: 375 * 667 pt @2x ~ 750 x 1334 ip6+: 414 * 736 pt @3x ~ 1242 x 2208 ip5: 320 * 568 pt @2x ~ 6 ...
- P2339 提交作业usaco(区间dp)
P2339 提交作业usaco 题目背景 usaco 题目描述 贝西在哞哞大学选修了 C 门课,她要把所有作业分别交给每门课的老师,然后去车站和同学们一起回家.每个老师在各自的办公室里,办公室要等他们 ...
- 洛谷P1010 幂次方
题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137137可表示为: 2(7)+2(3)+2( ...
- 【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍
原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性 ...
- javascript 数字日期格式转换为中文
写一个函数,把数字日期如2014-06-21转换为 二零一四年六月二十一日星期三 function convert(dateStr) { var dict = { "0": &qu ...
- Python学习笔记之默认参数
函数定义时 参数定义的顺序必须是:必选参数.默认参数.可变参数和关键字参数. def test(a,b,c=1,*d,**e) pass
- JS高级——监听浏览器的返回事件
https://www.cnblogs.com/Easty/p/7820055.html https://www.cnblogs.com/zhengyan/p/6912526.html http:// ...