【numpy】新版本中numpy(numpy>1.17.0)中的random模块
numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法。
首先查看numpy的版本:
import numpy
numpy.__version__
'1.18.2'
numpy获得随机数有两种方式:
- 结合BitGenerator生成伪随机数
- 结合Generate从一些统计分布中采样生成伪随机数
BitGenerator:生成随机数的对象。包含32或64位序列的无符号整数
Generator:将从BitGenerator生成的随机数序列转换为遵从特定概率分布(均匀、正态或二项式等)的数字序列的对象。
从Numpy版本1.17.0开始,可以使用许多不同的BitGenerators初始化Generator。 它包含了许多不同的概率分布。 传统的RandomState随机数例程仍然可用,但仅限于单个BitGenerator。为了方便和向后兼容,单个RandomState实例的方法被导入到numpy.random命名空间。
默认情况下,Generator使用PCG64提供的位,该位具有比RandomState中的传统mt19937随机数生成器更好的统计属性。
使用旧的numpy.random.RandomState
from numpy import random
random.standard_normal()
结果:1.3768264062478266
Generator可以替代RandomState。 现在,两个类实例都拥有一个内部BitGenerator实例来提供位流,可以通过gen.bit_generator对其进行访问。 某些过期的API清除意味着已从Generator中删除了旧方法和兼容性方法。
# As replacement for RandomState(); default_rng() instantiates Generator with
# the default PCG64 BitGenerator.
from numpy.random import default_rng
rg = default_rng()
rg.standard_normal()
rg.bit_generator
<numpy.random._pcg64.PCG64 at 0x7f6f87dac270>
以下这种方式可以支持RandomState和Generator,但是它们的接口有很大的不同:
try:
rg_integers = rg.integers
except AttributeError:
rg_integers = rg.randint
a = rg_integers(1000)
结果:775
种子可以传递给任何BitGenerator。 提供的值通过SeedSequence进行混合,以将可能的种子序列分布在BitGenerator的更广泛的初始化状态中。 这里使用PCG64,并用Generator包裹。
from numpy.random import Generator, PCG64
rg = Generator(PCG64(12345))
rg.standard_normal()
结果:-1.4238250364546312
新的基础结构采用了不同的方法来从RandomState对象生成随机数。 随机数生成分为两个部分,即位生成器和随机生成器。 BitGenerator的职责有限。 它管理状态并提供产生随机双精度数和随机无符号32位和64位值的功能。随机生成器采用生成器提供的流并将其转换成更有用的分布,例如模拟的正常随机值。 这种结构允许使用很少的代码重复来使用替代位生成器。 Generator是面向用户的对象,几乎与RandomState相同。 初始化生成器的规范方法将PCG64位生成器作为唯一参数。
from numpy.random import default_rng
rg = default_rng(12345)
rg.random()
结果:0.22733602246716966
也可以直接使用BitGenerator实例实例化Generator。 要使用较旧的MT19937算法,可以直接实例化并将其传递给Generator
from numpy.random import Generator, MT19937
rg = Generator(MT19937(12345))
rg.random()
结果:0.37786929937474845
警告:生成器不再提供用于生成NumPy标准的Box-Muller方法。 使用Generator不能为正态分布或任何其他依赖于正态的分布(例如RandomState.gamma RandomState.standard_t)确切的随机值。 如果需要按位向后兼容流,请使用RandomState。
- Generator的常规,指数和伽马函数使用256步Ziggurat方法,比NumPy的Box-Muller或逆CDF实现快2-10倍。
- 可选的dtype参数,它接受np.float32或np.float64来为选择分布产生统一的单或双精度的随机变量
- 可选的out参数,允许为选择分布填充现有阵列
- random_entropy提供对密码应用程序中使用的系统随机性源的访问(例如Unix上的/ dev / urandom)。
- 所有BitGenerator都可以通过CType(ctype)和CFFI(cffi)生成double,uint64和uint32。这允许在numba中使用位生成器。
- 位生成器可通过Cython用于下游项目。
- 整数现在是从离散均匀分布中生成整数随机数的规范方法。 rand和randn方法仅可通过旧版RandomState使用。端点关键字可用于指定打开或关闭间隔。这将替换randint和已弃用的random_integers。
- random现在是生成浮点随机数的规范方法,它取代了RandomState.random_sample,RandomState.sample和RandomState.ranf。这与Python的随机性是一致的。
- numpy中的所有BitGenerator都使用SeedSequence将种子转换为初始化状态。
Generator可以访问广泛的发行版,并替代RandomState。 两者之间的主要区别在于Generator依赖于附加的BitGenerator来管理状态并生成随机位,然后将这些随机位从有用的分布转换为随机值。 Generator使用的默认BitGenerator为PCG64。 可以通过将实例化的BitGenerator传递给Generator来更改BitGenerator。
也就是说,设置了:
np.random.default_rng(PCG64(随机种子))
在生成随机数的时候都会是相同的。然后替换掉了原来的RandomState(随机种子)
如果省略seed或None,则每次都会实例化一个新的BitGenerator和Generator。 此功能不管理默认的全局实例。
Generator的一些方法:
Generator.integers(low, high=None, size=None, dtype=’int64’, endpoint=False)
例如:
rng = np.random.default_rng(PCG64(12345))
rng.integers(2, size=10)
结果:array([1, 0, 1, 0, 0, 1, 1, 1, 1, 0])
这里的意思是生成10个数,这是个数的取值范围在0-2之间,不包括2.
再看些例子:
rng.integers(5, size=(2, 4))
结果:array([[4, 3, 4, 0], [4, 0, 2, 1]])
rng.integers(1, [3, 5, 10])
结果:array([1, 3, 3])
这里的意思是生成1×3的数组,并且每一位都限制了取值范围。
rng.integers([1, 5, 7], 10)
结果:array([6, 6, 7])
rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
结果:array([[ 1, 4, 8, 9], [ 5, 18, 16, 12]], dtype=uint8)
这里使用了广播机制。
Generator.random(size=None, dtype=’d’, out=None):
在半开区间[0.0,1.0)中返回随机浮点数。
结果来自指定时间间隔内的“连续均匀”分布。 要对
【numpy】新版本中numpy(numpy>1.17.0)中的random模块的更多相关文章
- Python中的Numpy入门教程
1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过nu ...
- Python中的numpy模块解析
numpy 1. 创建对象 维度(dimensions):轴 轴的个数:秩(rank) Numpy最重要的一个特点就是其N维数组对象(即ndarray) 创建数组最简单的函数就是用array函数: ...
- Python中的numpy函数的使用ones,zeros,eye
在看别人写的代码时,看到的不知道的函数,就在这里记下来. 原文是这样用的: weights = ones((numfeatures,1)) 在python中help(): import numpy a ...
- 关于在PyCharm中import numpy 出现from . import _mklinit ImportError: DLL load failed: 找不到指定模块
最近因为一些原因安装了Anaconda3并且重新配置Python环境,但是遇到了一些麻烦的事情. 首先就是在Anaconda已经装好numpy和mkl的情况下,在PyCharm中import nump ...
- Python中 list, numpy.array, torch.Tensor 格式相互转化
1.1 list 转 numpy ndarray = np.array(list) 1.2 numpy 转 list list = ndarray.tolist() 2.1 list 转 torch. ...
- 在virtualenv中安装NumPy、 SciPy、 scikit-learn、 matplotlib
首先要进入对应的虚拟环境 然后安装包 这里把安装源改成使用豆瓣的源进行下载 这样的话 下载速度会快很多 安装numpy包 pip install numpy -i https://pypi ...
- python中numpy的random模块
1. rand(d0,d1,.....,dn)产生[0,1]的浮点随机数,括号里面的参数可以指定产生数组的形状 例如:np.random.rand(3,2)则产生 3×2的数组,里面的数是0-1 ...
- numpy.random模块常用函数解析
numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...
- numpy的random模块
随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14 ...
随机推荐
- ajax 瀑布流 demo
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- win10环境下如何修改Python pip的更新源?
1.在window的文件夹窗口输入 : %APPDATA%2.在弹出的路径中新建pip文件夹,然后到pip文件夹里面去新建个pip.ini文件,然后再里面输入内容 [global] timeout = ...
- mybatis3.2.7应用_高级映射(一对一、一对多、多对多)
1. 一对一查询 需求:查询订单信息,关联查询创建订单的用户信息 1.1 使用resultType实现 1.1.1 sql语句 确定查询的主表:订单表 确定查询的关联表:用户表 ...
- 菜鸟教程-python中的包
转载自:http://www.runoob.com/python/python-modules.html 包是一个分层次的文件目录结构,它定义了一个由模块及子包,和子包下的子包等组成的 Python ...
- 试译 Understanding Delta-Sigma Modulators
接触Σ-Δ调制的时候发现国内有关的资料比较匮乏,因为缺乏了解还有一些人把其中的原理吹得神乎其神难以理解.其实Σ-Δ调制的原理是很简单.逻辑上很自然的,可以定性理解成传统ADC/DAC量化的是 ...
- pycharm创建虚拟环境venv和添加依赖库package
1.创建虚拟环境 因为项目采用不同版本的python,所依赖的库的版本也不一样,为了避免版本冲突,为每一个项目每个python版本创建一个虚拟环境,环境中所使用的依赖库也是独立存在,不会被其他版本或其 ...
- 卷积的发展历程,原理和基于 TensorFlow 的实现
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 稀疏交互 在生物学家休博尔和维瑟尔早期关于猫视觉皮层的研究中发现, ...
- 为何Keras中的CNN是有问题的,如何修复它们?
在训练了 50 个 epoch 之后,本文作者惊讶地发现模型什么都没学到,于是开始深挖背后的问题,并最终从恺明大神论文中得到的知识解决了问题. 上个星期我做了一些实验,用了在 CIFAR10 数据集上 ...
- Vue2.0 -- 钩子函数/ 过度属性/常用指令/以及Vue-resoure发送请求
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python python 函数参数:参数组合
'''在Python中定义函数,可以用必选参数.默认参数.可变参数和关键字参数, 这4种参数都可以一起使用,或者只用其中某些 参数定义的顺序必须是:必选参数.默认参数.可变参数和关键字参数 ''' d ...