【numpy】新版本中numpy(numpy>1.17.0)中的random模块
numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法。
首先查看numpy的版本:
import numpy
numpy.__version__
'1.18.2'
numpy获得随机数有两种方式:
- 结合BitGenerator生成伪随机数
- 结合Generate从一些统计分布中采样生成伪随机数
BitGenerator:生成随机数的对象。包含32或64位序列的无符号整数
Generator:将从BitGenerator生成的随机数序列转换为遵从特定概率分布(均匀、正态或二项式等)的数字序列的对象。
从Numpy版本1.17.0开始,可以使用许多不同的BitGenerators初始化Generator。 它包含了许多不同的概率分布。 传统的RandomState随机数例程仍然可用,但仅限于单个BitGenerator。为了方便和向后兼容,单个RandomState实例的方法被导入到numpy.random命名空间。
默认情况下,Generator使用PCG64提供的位,该位具有比RandomState中的传统mt19937随机数生成器更好的统计属性。
使用旧的numpy.random.RandomState
from numpy import random
random.standard_normal()
结果:1.3768264062478266
Generator可以替代RandomState。 现在,两个类实例都拥有一个内部BitGenerator实例来提供位流,可以通过gen.bit_generator对其进行访问。 某些过期的API清除意味着已从Generator中删除了旧方法和兼容性方法。

# As replacement for RandomState(); default_rng() instantiates Generator with
# the default PCG64 BitGenerator.
from numpy.random import default_rng
rg = default_rng()
rg.standard_normal()
rg.bit_generator
<numpy.random._pcg64.PCG64 at 0x7f6f87dac270>
以下这种方式可以支持RandomState和Generator,但是它们的接口有很大的不同:
try:
rg_integers = rg.integers
except AttributeError:
rg_integers = rg.randint
a = rg_integers(1000)
结果:775
种子可以传递给任何BitGenerator。 提供的值通过SeedSequence进行混合,以将可能的种子序列分布在BitGenerator的更广泛的初始化状态中。 这里使用PCG64,并用Generator包裹。
from numpy.random import Generator, PCG64
rg = Generator(PCG64(12345))
rg.standard_normal()
结果:-1.4238250364546312
新的基础结构采用了不同的方法来从RandomState对象生成随机数。 随机数生成分为两个部分,即位生成器和随机生成器。 BitGenerator的职责有限。 它管理状态并提供产生随机双精度数和随机无符号32位和64位值的功能。随机生成器采用生成器提供的流并将其转换成更有用的分布,例如模拟的正常随机值。 这种结构允许使用很少的代码重复来使用替代位生成器。 Generator是面向用户的对象,几乎与RandomState相同。 初始化生成器的规范方法将PCG64位生成器作为唯一参数。
from numpy.random import default_rng
rg = default_rng(12345)
rg.random()
结果:0.22733602246716966
也可以直接使用BitGenerator实例实例化Generator。 要使用较旧的MT19937算法,可以直接实例化并将其传递给Generator
from numpy.random import Generator, MT19937
rg = Generator(MT19937(12345))
rg.random()
结果:0.37786929937474845
警告:生成器不再提供用于生成NumPy标准的Box-Muller方法。 使用Generator不能为正态分布或任何其他依赖于正态的分布(例如RandomState.gamma RandomState.standard_t)确切的随机值。 如果需要按位向后兼容流,请使用RandomState。
- Generator的常规,指数和伽马函数使用256步Ziggurat方法,比NumPy的Box-Muller或逆CDF实现快2-10倍。
- 可选的dtype参数,它接受np.float32或np.float64来为选择分布产生统一的单或双精度的随机变量
- 可选的out参数,允许为选择分布填充现有阵列
- random_entropy提供对密码应用程序中使用的系统随机性源的访问(例如Unix上的/ dev / urandom)。
- 所有BitGenerator都可以通过CType(ctype)和CFFI(cffi)生成double,uint64和uint32。这允许在numba中使用位生成器。
- 位生成器可通过Cython用于下游项目。
- 整数现在是从离散均匀分布中生成整数随机数的规范方法。 rand和randn方法仅可通过旧版RandomState使用。端点关键字可用于指定打开或关闭间隔。这将替换randint和已弃用的random_integers。
- random现在是生成浮点随机数的规范方法,它取代了RandomState.random_sample,RandomState.sample和RandomState.ranf。这与Python的随机性是一致的。
- numpy中的所有BitGenerator都使用SeedSequence将种子转换为初始化状态。
Generator可以访问广泛的发行版,并替代RandomState。 两者之间的主要区别在于Generator依赖于附加的BitGenerator来管理状态并生成随机位,然后将这些随机位从有用的分布转换为随机值。 Generator使用的默认BitGenerator为PCG64。 可以通过将实例化的BitGenerator传递给Generator来更改BitGenerator。
也就是说,设置了:
np.random.default_rng(PCG64(随机种子))
在生成随机数的时候都会是相同的。然后替换掉了原来的RandomState(随机种子)
如果省略seed或None,则每次都会实例化一个新的BitGenerator和Generator。 此功能不管理默认的全局实例。
Generator的一些方法:

Generator.integers(low, high=None, size=None, dtype=’int64’, endpoint=False)
例如:
rng = np.random.default_rng(PCG64(12345))
rng.integers(2, size=10)
结果:array([1, 0, 1, 0, 0, 1, 1, 1, 1, 0])
这里的意思是生成10个数,这是个数的取值范围在0-2之间,不包括2.
再看些例子:
rng.integers(5, size=(2, 4))
结果:array([[4, 3, 4, 0], [4, 0, 2, 1]])
rng.integers(1, [3, 5, 10])
结果:array([1, 3, 3])
这里的意思是生成1×3的数组,并且每一位都限制了取值范围。
rng.integers([1, 5, 7], 10)
结果:array([6, 6, 7])
rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
结果:array([[ 1, 4, 8, 9], [ 5, 18, 16, 12]], dtype=uint8)
这里使用了广播机制。
Generator.random(size=None, dtype=’d’, out=None):
在半开区间[0.0,1.0)中返回随机浮点数。
结果来自指定时间间隔内的“连续均匀”分布。 要对
【numpy】新版本中numpy(numpy>1.17.0)中的random模块的更多相关文章
- Python中的Numpy入门教程
1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过nu ...
- Python中的numpy模块解析
numpy 1. 创建对象 维度(dimensions):轴 轴的个数:秩(rank) Numpy最重要的一个特点就是其N维数组对象(即ndarray) 创建数组最简单的函数就是用array函数: ...
- Python中的numpy函数的使用ones,zeros,eye
在看别人写的代码时,看到的不知道的函数,就在这里记下来. 原文是这样用的: weights = ones((numfeatures,1)) 在python中help(): import numpy a ...
- 关于在PyCharm中import numpy 出现from . import _mklinit ImportError: DLL load failed: 找不到指定模块
最近因为一些原因安装了Anaconda3并且重新配置Python环境,但是遇到了一些麻烦的事情. 首先就是在Anaconda已经装好numpy和mkl的情况下,在PyCharm中import nump ...
- Python中 list, numpy.array, torch.Tensor 格式相互转化
1.1 list 转 numpy ndarray = np.array(list) 1.2 numpy 转 list list = ndarray.tolist() 2.1 list 转 torch. ...
- 在virtualenv中安装NumPy、 SciPy、 scikit-learn、 matplotlib
首先要进入对应的虚拟环境 然后安装包 这里把安装源改成使用豆瓣的源进行下载 这样的话 下载速度会快很多 安装numpy包 pip install numpy -i https://pypi ...
- python中numpy的random模块
1. rand(d0,d1,.....,dn)产生[0,1]的浮点随机数,括号里面的参数可以指定产生数组的形状 例如:np.random.rand(3,2)则产生 3×2的数组,里面的数是0-1 ...
- numpy.random模块常用函数解析
numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...
- numpy的random模块
随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14 ...
随机推荐
- mysql schema设计中应避免的陷阱
谨记红字: 1. 表中谨防太多列: MySQL 的存储引擎API 工作时需要在服务器层和存储引擎层之间通过行缓冲格式拷贝数据,然后在服务器层将缓冲内容解码成各个列.从行缓冲中将编码过的列转换成行数据结 ...
- 有关KMP算法
KMP算法: 此算法的本质是首先对于模板字符串进行计算,生成一个数组(next数组),该数组反映了模板字符串的情况. 例: S: ABADACABABCD P: ABAB 当我们查询到P3与S3(B和 ...
- 我的MacbookPro进水了!维修过程记录
电脑进水与解决方案 如果事情有变坏的可能,不管这种可能性有多小,它总会发生.---墨菲定律 进水过程 2020年03月21日日下午3点左右,不小心把水杯碰倒了,水通过电脑右侧的键盘处进入了大概有10毫 ...
- 网络安全从入门到精通 ( 第二章-5) 后端基础PHP—简介及基本函数-下
本文内容: 循环语句 PHP获取表单信息 PHP操作Mysql语句 语法SQL注入 1,循环语句: for循环: 语法:for($x=0,$x<10;$x++){执行语句;} 注意:$x++,先 ...
- 《Python学习手册 第五版》 -第18章 参数
在函数的定义和调用中,参数是使用最多喝最频繁的,本章内容就是围绕函数的参数进行讲解 本章重点内容如下: 1.参数的传递 1)不可变得参数传递 2)可变得参数传递 2.参数的匹配模式 1)位置次序:从左 ...
- Jenkins分布式构建与并行构建
Jenkins分布式构建与并行构建 jenkins的架构 Jenkins采用的是"master+agent(slave)"架构.Jenkins master负责提供界面.处理HTT ...
- MySQL数据库升级
当前不少系统的数据库依旧是MySQL5.6,由于MySQL5.7及MySQL8.0在性能及安全方面有着很大的提升,因此需要升级数据库.本文通过逻辑方式.物理方式原地升级来介绍MySQL5.6 升级至M ...
- OpenCV-Python 轮廓分层 | 二十五
目标 这次我们学习轮廓的层次,即轮廓中的父子关系. 理论 在前几篇关于轮廓的文章中,我们已经讨论了与OpenCV提供的轮廓相关的几个函数.但是当我们使用cv.findcontour()函数在图像中找到 ...
- POJ - 1061 青蛙的约会 扩展欧几里得 + (贝祖公式)最小正整数解
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...
- adb 之日志文件分析(五)
一,logcat日志文件 1,addroid日志系统提供了记录和查看系统调试信息的功能,日志都是从各种软件和一些系统的缓冲区(内存)中记录下来的,缓冲区可以通过logcat命令来查看和使用 2,在开发 ...