[PyTorch入门之60分钟入门闪击战]之训练分类器
训练分类器
目前为止,你已经知道如何定义神经网络、计算损失和更新网络的权重。现在你可能在想,那数据呢?
What about data?
通常,当你需要处理图像、文本、音频或者视频数据时,你可以使用标准Python包来将数据导入到numpy 数组中。然后再将数组转换成torch.Tensor。
- 对于图像,可用的包有:Pillow、OpenCV
 - 对于音频,可用的包有:scipy和librosa
 - 对于文本,无论是基于原始的Python或Cython的加载,或是NLTK和SpaCy都是可以的。
 - 对于视频数据,PyTorch提供一个名为
torchvision的包,其中包含了常见数据集的数据加载器,像Imagenet、CIFAR10、MNISt等,以及图形数据转换器:torchvision.datasets和torch.utils.data.DataLoader。 
这提供了极大的便利,同时避免编写样板代码。
在本教程中,我们使用CIFAR10数据集。它包含的分类有:飞机、汽车、鸟、猫
鹿、狗、青蛙、马、船和卡车。CIFAR-10中的图像尺寸是3x32x32,即32x32像素大小的3通道彩色图像。

训练一个图像分类器
要训练一个图像分类器,我们需要按步骤执行以下操作:
- 使用
torchvision加载和标准化CIFAR10训练和测试数据集 - 定义卷积神经网络
 - 定义损失函数
 - 使用训练数据训练网络
 - 使用测试数据测试网络
 
1. 加载并标准化CIFAR10
使用torchvision很容易导入CIFAR10。
import torch
import torchvision
import torchvision.transforms as transforms
torchvision数据集的输出是范围在[0,1]之间的PILImage图像。我们需要将他们转换成标准化范围在[-1,1]之间的张量。
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
trainset = torchvision.datasets.CIFAR10(
    root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(
    trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
    root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(
    testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'trunk')
输出:
Downloading http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Files already downloaded and verified
下面我们查看下部分训练图像:
import numpy as np
import matplotlib.pyplot as plt
def imshow(img):
    # show an image
    img = img / 2+0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
# 随机获取训练图像
dataiter = iter(trainloader)
images, labels = dataiter.next()
# 输出图形
imshow(torchvision.utils.make_grid(images))
# 输出标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

输出:
 bird   dog   cat   car
2. 定义卷积神经网络
复制之前神经网络章节中的神经网络定义,并修改为3通道图像。
import torch.nn.functional as F
import torch.nn as nn
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
3. 定义损失函数和优化
使用分类交叉熵损失函数和动量随机梯度下降。
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
4. 训练网络
接下来就是有趣的部分了。我们只需要循环迭代我们的数据,将输入提供给网络并进行优化。
for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # 获取输入值,data是一个[input,labels]的列表
        inputs, labels = data
        # 初始化参数的梯度
        optimizer.zero_grad()
        # 前向 + 反向 + 优化
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计结构
        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d,%5d] loss: %.3f' % (epoch + 1, i+1, running_loss/2000))
            running_loss = 0.0
print('Finished Trainning')
输出:
[1, 2000] loss: 2.142
[1, 4000] loss: 1.964
[1, 6000] loss: 1.973
[1, 8000] loss: 1.957
[1,10000] loss: 1.941
[1,12000] loss: 1.960
[2, 2000] loss: 1.995
[2, 4000] loss: 2.019
[2, 6000] loss: 1.979
[2, 8000] loss: 2.006
[2,10000] loss: 2.015
[2,12000] loss: 1.997
Finished Trainning
5. 使用测试数据测试网络
我们已经训练了两此网络。但是我们需要检查网络是否已经学到了什么。
我们可以通过神经网络输出的类标签来检查这一点,并结合实际情况进行检查。如果预测正确,我们就将样本添加到正确的预测列表中。
现在,第一步,我们先从测试集中显示一些图片来方便比较:
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

输出:
GroundTruth:    cat  ship  ship plane
现在,我们看下神经网络觉得我们的例子是什么:
outputs = net(images)
输出是由10个类别的得分。类别的得分越高,神经网络就会预测图像是那个类。所以,我们现在获取得分最高的索引:
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
输出:
Predicted:    car  ship trunk  plane
结果还不错。
接下来看看网络在整个测试集上的预测。
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))
输出:
Accuracy of the network on the 10000 test images: 27 %
结果显然比随机,10%的准确率(随机从10个类别中取一个),高很多。看起来网络是学到了东西的。
那么,哪些类别预测得好,哪些类别预测得不好呢:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1
for i in range(10):
    print('Accuracy of %5s : %2d %%' %
          (classes[i], 100*class_correct[i]/class_total[i]))
输出:
Accuracy of plane :  7 %
Accuracy of   car : 53 %
Accuracy of  bird :  9 %
Accuracy of   cat :  2 %
Accuracy of  deer : 57 %
Accuracy of   dog : 41 %
Accuracy of  frog :  3 %
Accuracy of horse : 38 %
Accuracy of  ship : 33 %
Accuracy of trunk : 41 %
那么接下来做什么呢?在GPU上运行神经网络如何?
在GPU上训练
就像在CPU上训练张量一样,你可以将网络转移到GPU上。
如果我们有可用的CUDA的话,我们首先将我们的设备定义为第一个可见的cuda设备。
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
输出:
cuda:0
接下来的章节假定device是CUDA设备。
然后这些方法将递归遍历所有的模型并将参数和缓冲区转换为CUDA张量:
net.to(device)
注意,你还必须将每一步的输入和目标也转移到GPU上:
inputs, labels = data[0].to(device),data[1].to(device)
												
											[PyTorch入门之60分钟入门闪击战]之训练分类器的更多相关文章
- [PyTorch入门之60分钟入门闪击战]之入门
		
深度学习60分钟入门 来源于这里. 本文目标: 在高层次上理解PyTorch的Tensor库和神经网络 训练一个小型的图形分类神经网络 本文示例运行在ipython中. 什么是PyTorch PyTo ...
 - [PyTorch入门之60分钟入门闪击战]之神经网络
		
神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers ...
 - [PyTorch入门之60分钟入门闪击战]之自动推倒
		
AUTOGRAD: AUTOMATIC DIFFERENTIATION(自动分化) 来源于这里. autograd包是PyTorch中所有神经网络的核心.首先我们先简单地了解下它,然后我们将训练我们的 ...
 - PyTorch 60 分钟入门教程
		
PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程 http://pytorchchina.com/2018/06/25/what-is-pytorch/ PyTorch 6 ...
 - 【PyTorch深度学习60分钟快速入门 】Part0:系列介绍
		
说明:本系列教程翻译自PyTorch官方教程<Deep Learning with PyTorch: A 60 Minute Blitz>,基于PyTorch 0.3.0.post4 ...
 - 【PyTorch深度学习60分钟快速入门 】Part4:训练一个分类器
		
太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准 ...
 - 【PyTorch深度学习60分钟快速入门 】Part5:数据并行化
		
在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张 ...
 - 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分
		
在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...
 - 【PyTorch深度学习60分钟快速入门 】Part1:PyTorch是什么?
		
0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性 ...
 
随机推荐
- sol - 0x60,61,62
			
[例题]走廊泼水节 设当前扫描到边x,y,长度为z,x所处的并查集为Sx,y所处的并查集为Sy: 对于任意u属于Sx,v属于Sy,我们可以知道u,v之间必连一条边 但是我们要在保证x,y之间的边属于唯 ...
 - jdk8下载地址
			
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html Java SE Binaries ...
 - 第04项目:淘淘商城(SpringMVC+Spring+Mybatis)【第七天】(redis缓存)
			
https://pan.baidu.com/s/1bptYGAb#list/path=%2F&parentPath=%2Fsharelink389619878-229862621083040 ...
 - xib下如何修改frame
			
1.取消xib下Use Auto Layout 2.xcode->product->clean
 - CentOS下MySQL忘记root密码解决方法【亲测】
			
1.修改MySQL的登录设置: # vim /etc/my.cnf 在[mysqld]的段中加上一句:skip-grant-tables 例如: [mysqld] datadir=/var/lib/m ...
 - Linux centos 下安装redis
			
一.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel 二.选择安装文件 ...
 - android 新闻应用、Xposed模块、酷炫的加载动画、下载模块、九宫格控件等源码
			
Android精选源码 灵活的ShadowView,可替代CardView使用 基于Tesseract-OCR实现自动扫描识别手机号 Android播放界面仿QQ音乐开源音乐播放器 新闻应用项目采用了 ...
 - spring-boot-1.4x后@ConfigurationProperties注解舍弃location
			
--定义额外的.properties配置文件,并引入配置
 - mui a链接的点击
			
mui里面,使用click点击在有时候是无效的,或者点击的位置错位.在别处点击才有效. mui中对a的点击应该这样写: mui('body').on('tap', "#chart" ...
 - spring-mvc基于xml的配置
			
配置web.xml <!--配置spring-MVC拦截--> <servlet> <servlet-name>DispatcherServlet</serv ...