「牛客CSP-S2019赛前集训营2」服务器需求
传送门
NowCoder
解题思路
考虑一种贪心选择方法:每次选出最大的 \(m\) 个 \(a_i\) 进行覆盖。
那么就会出现一种特殊情况,最高的那个 \(a_i\) 需要多次选择,而且不得不每次多用一个机器。
所以说我们每次的答案就是 \(\max\left\{\lceil\frac{\sum_{i=1}^na_i}{m}\rceil,\max_{1\le i \le n}a_i\right\}\)。
修改操作可以用线段树,平衡树等数据结构维护一下。
细节注意事项
- 咕咕咕。。。
参考代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#include <queue>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
}
typedef long long LL;
const int _ = 400002;
int n, m, q, a[_];
LL sum[_ << 2]; int mx[_ << 2];
inline int lc(int p) { return p << 1; }
inline int rc(int p) { return p << 1 | 1; }
inline void pushup(int p) {
mx[p] = max(mx[lc(p)], mx[rc(p)]);
sum[p] = sum[lc(p)] + sum[rc(p)];
}
inline void build(int p = 1, int l = 1, int r = n) {
if (l == r) { mx[p] = sum[p] = a[l]; return ; }
int mid = (l + r) >> 1;
build(lc(p), l, mid), build(rc(p), mid + 1, r), pushup(p);
}
inline void update(int x, int v, int p = 1, int l = 1, int r = n) {
if (l == r) { mx[p] = sum[p] = v; return ; }
int mid = (l + r) >> 1;
if (x <= mid) update(x, v, lc(p), l, mid);
else update(x, v, rc(p), mid + 1, r);
pushup(p);
}
inline LL calc() {
return max((LL) mx[1], sum[1] / m + (LL) (sum[1] % m != 0));
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n), read(m), read(q);
for (rg int i = 1; i <= n; ++i) read(a[i]);
build();
printf("%lld\n", calc());
for (rg int p, c, i = 1; i <= q; ++i)
read(p), read(c), update(p, c), printf("%lld\n", calc());
return 0;
}
完结撒花 \(qwq\)
「牛客CSP-S2019赛前集训营2」服务器需求的更多相关文章
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B题 区间
牛客网NOIP赛前集训营-提高组(第四场) 题目描述 给出一个序列 a1, ..., an. 定义一个区间 [l,r] 是好的,当且仅当这个区间中存在一个 i,使得 ai 恰好等于 al, al+1, ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 牛客网NOIP赛前集训营-提高组(第一场)
牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...
- 牛客网NOIP赛前集训营-提高组18/9/9 A-中位数
链接:https://www.nowcoder.com/acm/contest/172/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...
- 牛客网NOIP赛前集训营-提高组(第二场)A 方差
链接:https://www.nowcoder.com/acm/contest/173/A来源:牛客网 题目描述 一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中 表示序列的平 ...
- 牛客网NOIP赛前集训营-提高组(第八场)
染色 链接:https://ac.nowcoder.com/acm/contest/176/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10 ...
- 牛客网NOIP赛前集训营 提高组(第七场)
中国式家长 2 链接:https://www.nowcoder.com/acm/contest/179/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K, ...
随机推荐
- WinForm开发(6)——C#/winform程序打包部署时,如何把SQL数据库一起打包进去
打包数据库到安装程序中 方法1. 备份/恢复先备份数据库:backup database 数据库 to disk='c:\备份.bak' 将备份文件打包到安装程序中. 在第一次运行程序的时候,进行数据 ...
- MariaDB-Galera部署
Galera Cluster:集成了Galera插件的MySQL集群,是一种新型的,数据不共享的,高度冗余的高可用方案,目前Galera Cluster有两个版本,分别是Percona Xtradb ...
- stm32CubeMx lwip + freeRTOS
MCU: STM32F429IGT6 工具:STM32CubeMx 版本号 5.0.0 Keil uVersion5 目的:使用LWIP 实现简单的网络连通 一 简介 LWIP(Light Wei ...
- 开关机安全控制!(设置进入bois的密码)
1.调整 BOIS 引导设置(1)将第一引导设备设为当前系统所在硬盘 (2)设置管理员密码 (3)进入bois后如图所示需输入bols密码才能登入
- text-align:justify 失效问题。
text-align:justify 失效问题. <div class="fmlist_left"> <p> <span> 品名 <i c ...
- Java并发编程(四):并发容器(转)
解决并发情况下的容器线程安全问题的.给多线程环境准备一个线程安全的容器对象. 线程安全的容器对象: Vector, Hashtable.线程安全容器对象,都是使用 synchronized 方法实现的 ...
- Mybatis遇到的报错
MyBatis遇到的报错: 1.Caused by: org.xml.sax.SAXParseException; lineNumber: 35; columnNumber: 17; 元素类型为 &q ...
- MySQL高级-索引1
1.索引是什么 索引(Index)是帮助MySQL高效获取数据的数据结构.可以得到索引的本质:索引是数据结构. 可以理解为“排好序的快速查找数据结构” 在数据之外,数据库系统还维护着满足特定查找算法的 ...
- Python - 代码片段,Snippets,Gist
说明 代码片段来自网上搬运的或者自己写的 华氏温度转摄氏温度 f = float(input('请输入华氏温度: ')) c = (f - 32) / 1.8 print('%.1f华氏度 = %.1 ...
- 07 DTFT
DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...