Today the company has m tasks to complete. The ith task need xi minutes to complete. Meanwhile, this task has a difficulty level yi. The machine whose level below this task’s level yi cannot complete this task. If the company completes this task, they will get (500*xi+2*yi) dollars. 
The company has n machines. Each machine has a maximum working time and a level. If the time for the task is more than the maximum working time of the machine, the machine can not complete this task. Each machine can only complete a task one day. Each task can only be completed by one machine. 
The company hopes to maximize the number of the tasks which they can complete today. If there are multiple solutions, they hopes to make the money maximum.

InputThe input contains several test cases. 
The first line contains two integers N and M. N is the number of the machines.M is the number of tasks(1 < =N <= 100000,1<=M<=100000). 
The following N lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the maximum time the machine can work.yi is the level of the machine. 
The following M lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the time we need to complete the task.yi is the level of the task.OutputFor each test case, output two integers, the maximum number of the tasks which the company can complete today and the money they will get.Sample Input

1 2
100 3
100 2
100 1

Sample Output

1 50004

思路:本题和H(Alice and Bob)一样,可看作偏序,x的权重大于y,将machine的x大于等于task的y值入队,每次入队最小的大于task的y值的,这样就能保证后面的y可以更多的匹配,
而x在入队时已经得到保证,代码如下:
typedef long long LL;

const int maxm = ;

struct Node {
int x, y; bool operator<(const Node &a)const {
return x > a.x || (x == a.x && y > a.y);
}
} machine[maxm], task[maxm]; int n, t, tmp[]; int main() {
while(scanf("%d%d", &n, &t) == ) {
memset(tmp, , sizeof(tmp));
for (int i = ; i < n; ++i)
scanf("%d%d", &machine[i].x, &machine[i].y);
for(int i = ; i < t; ++i)
scanf("%d%d", &task[i].x, &task[i].y);
sort(machine, machine + n), sort(task, task + t);
int complete = ;
LL sum = ;
for(int i = , j = ; i < t; ++i) {
while(j < n && machine[j].x >= task[i].x) {
tmp[machine[j].y]++;
j++;
}
for (int k = task[i].y; k <= ; ++k) {
if(tmp[k]) {
++complete;
sum += task[i].x * * 1LL + * 1LL * task[i].y;
tmp[k]--;
break;
}
}
}
printf("%d %I64d\n", complete, sum);
}
return ;
}

补:

多者以上的贪心都要跟偏序挂钩

												

Day3-G - Task HDU4864的更多相关文章

  1. 牛客国庆集训派对Day3 G Stones

    Stones 思路: sg函数打表找规律 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #in ...

  2. Multi-tasking RTOS for microprocessors with limited memory by saving only a single return address per task during context switching

    A real-time operating system (RTOS) for use with minimal-memory controllers has a kernel for managin ...

  3. Java性能提示(全)

    http://www.onjava.com/pub/a/onjava/2001/05/30/optimization.htmlComparing the performance of LinkedLi ...

  4. WSL(Windows Subsystem for Linux)--Pico Process Overview

    [转载] Windows Subsystem for Linux -- Pico Process Overview Overview This post discusses pico processe ...

  5. MTK6261 11C之Init Analysis【手记】

    初始化流程 Application_Initialize systemInitialization(); HWDInitialization(); USC_Start(); OSTD_Init(); ...

  6. windows下使用vscode编写运行以及调试C/C++

    未经允许,禁止转载,唯一出处:tangming博客园 最后更新于2019年4月4日: 多次更新,内容较多,篇幅较大,但如果是喜欢visual stdio code这款编辑器的话建议仔细阅读,有疑问的地 ...

  7. FuelPHP 系列(一) ------ Oil 命令

    之前用过 Laravel,框架自带的 artisan 命令,用得爽到爆.现在工作需要,要学习 FuelPHP,首先看到框架目录结构,有 coposer.json 框架可以用 composer 管理,一 ...

  8. Should I expose synchronous wrappers for asynchronous methods?

    In a previous post Should I expose asynchronous wrappers for synchronous methods?, I discussed " ...

  9. Should I expose asynchronous wrappers for synchronous methods?

    Lately I've received several questions along the lines of the following, which I typically summarize ...

随机推荐

  1. elasticsearch ik解析器

    ik解析器 1.      ik解析器 The IK Analysis plugin integrates Lucene IK analyzer (http://code.google.com/p/i ...

  2. 矩阵matrix

    矩阵matrix 1. 矩阵matrix 1.1. 定义由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵.记作: 这m×n 个数称为矩阵A的元素,简称为元,数aij ...

  3. ConcurrentHashMap 实现缓存类

    参考:https://blog.csdn.net/woshilijiuyi/article/details/81335497 在规定时间内,使用 hashMap 实现一个缓存工具类,需要考虑一下几点 ...

  4. 【Hutool】工具类之日期时间工具-DateUtil

    日期时间工具类 一.依赖 <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-al ...

  5. JS 上传图片压缩,原比例压缩

    复制 粘贴 改吧改吧就可用,原生js var fileObj = file.file;//原文件 file是我用vue-vant里的组件,里边有file(原文件)和content(base64) 其它 ...

  6. 【JS 移动端】获取设置页面大小

    获取设置页面大小 function getMobileData() { var ismobile = false; browser = { versions: function () { var u ...

  7. pexpect &&pxssh

    python 3.6 pip  install pexpect #!/usr/bin/python3 import os import sys curPath = os.path.abspath(os ...

  8. FTP-Publisher Plugin

    使用 FTP-Publisher Plugin 在 http://wiki.hudson-ci.org/display/HUDSON/FTP-Publisher+Plugin 有详细说明, 需要注意的 ...

  9. php 基础 获取远程连接

    1 file_get_contents get $opts = array( 'http'=>array( 'method'=>"GET", 'timeout'=> ...

  10. Pandas 性能优化 学习笔记

    摘要 本文介绍了使用 Pandas 进行数据挖掘时常用的加速技巧. 实验环境 import numpy as np import pandas as pd print(np.__version__) ...