Scala教程之:Future和Promise
文章目录
在scala中可以方便的实现异步操作,这里是通过Future来实现的,和java中的Future很相似,但是功能更加强大。
定义返回Future的方法
下面我们看下如何定义一个返回Future的方法:
println("Step 1: Define a method which returns a Future")
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
def donutStock(donut: String): Future[Int] = Future {
// assume some long running database operation
println("checking donut stock")
10
}
注意这里需要引入scala.concurrent.ExecutionContext.Implicits.global, 它会提供一个默认的线程池来异步执行Future。
阻塞方式获取Future的值
println("\nStep 2: Call method which returns a Future")
import scala.concurrent.Await
import scala.concurrent.duration._
val vanillaDonutStock = Await.result(donutStock("vanilla donut"), 5 seconds)
println(s"Stock of vanilla donut = $vanillaDonutStock")
donutStock() 是异步执行的,我们可以使用Await.result() 来阻塞主线程来等待donutStock()的执行结果。
下面是其输出:
Step 2: Call method which returns a Future
checking donut stock
Stock of vanilla donut = 10
非阻塞方式获取Future的值
我们可以使用Future.onComplete() 回调来实现非阻塞的通知:
println("\nStep 2: Non blocking future result")
import scala.util.{Failure, Success}
donutStock("vanilla donut").onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
Thread.sleep(3000)
Future.onComplete() 有两种可能情况,Success 或者 Failure,需要引入: import scala.util.{Failure, Success}。
Future链
有时候我们需要在获得一个Future之后再继续对其进行操作,有点类似于java中的管道,下面看一个例子:
println("\nStep 2: Define another method which returns a Future")
def buyDonuts(quantity: Int): Future[Boolean] = Future {
println(s"buying $quantity donuts")
true
}
上面我们又定义了一个方法,用来接收donutStock()的返回值,然后再返回一个Future[Boolean] 。
我们看下使用flatmap该怎么链接他们:
println("\nStep 3: Chaining Futures using flatMap")
val buyingDonuts: Future[Boolean] = donutStock("plain donut").flatMap(qty => buyDonuts(qty))
import scala.concurrent.Await
import scala.concurrent.duration._
val isSuccess = Await.result(buyingDonuts, 5 seconds)
println(s"Buying vanilla donut was successful = $isSuccess")
同样的,我们还可以使用for语句来进行链接:
println("\nStep 3: Chaining Futures using for comprehension")
for {
stock <- donutStock("vanilla donut")
isSuccess <- buyDonuts(stock)
} yield println(s"Buying vanilla donut was successful = $isSuccess")
Thread.sleep(3000)
flatmap VS map
map就是对集合中的元素进行重映射,而flatmap则会将返回的值拆散然后重新组合。 下面举个直观的例子:
val buyingDonuts: Future[Boolean] = donutStock("plain donut").flatMap(qty => buyDonuts(qty))
flatMap返回的值是Future[Boolean]。
val buyingDonuts: Future[Future[Boolean]] = donutStock("plain donut").Map(qty => buyDonuts(qty))
map返回的值是Future[Future[Boolean]]。
Future.sequence() VS Future.traverse()
如果我们有很多个Future,然后想让他们并行执行,则可以使用 Future.sequence() 。
println(s"\nStep 2: Create a List of future operations")
val futureOperations = List(
donutStock("vanilla donut"),
donutStock("plain donut"),
donutStock("chocolate donut")
)
println(s"\nStep 5: Call Future.sequence to run the future operations in parallel")
val futureSequenceResults = Future.sequence(futureOperations)
futureSequenceResults.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Future.traverse() 和Future.sequence() 类似, 唯一不同的是,Future.traverse()可以对要执行的Future进行操作,如下所示:
println(s"\nStep 3: Call Future.traverse to convert all Option of Int into Int")
val futureTraverseResult = Future.traverse(futureOperations){ futureSomeQty =>
futureSomeQty.map(someQty => someQty.getOrElse(0))
}
futureTraverseResult.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Future.foldLeft VS Future reduceLeft
foldLeft 和 reduceLeft 都是用来从左到右做集合操作的,区别在于foldLeft可以提供默认值。看下下面的例子:
println(s"\nStep 3: Call Future.foldLeft to fold over futures results from left to right")
val futureFoldLeft = Future.foldLeft(futureOperations)(0){ case (acc, someQty) =>
acc + someQty.getOrElse(0)
}
futureFoldLeft.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 3: Call Future.foldLeft to fold over futures results from left to right
Results 20
println(s"\nStep 3: Call Future.reduceLeft to fold over futures results from left to right")
val futureFoldLeft = Future.reduceLeft(futureOperations){ case (acc, someQty) =>
acc.map(qty => qty + someQty.getOrElse(0))
}
futureFoldLeft.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 3: Call Future.reduceLeft to fold over futures results from left to right
Results Some(20)
Future firstCompletedOf
firstCompletedOf在处理多个Future请求时,会返回第一个处理完成的future结果。
println(s"\nStep 3: Call Future.firstCompletedOf to get the results of the first future that completes")
val futureFirstCompletedResult = Future.firstCompletedOf(futureOperations)
futureFirstCompletedResult.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Future zip VS zipWith
zip用来将两个future结果组合成一个tuple. zipWith则可以自定义Function来处理future返回的结果。
println(s"\nStep 3: Zip the values of the first future with the second future")
val donutStockAndPriceOperation = donutStock("vanilla donut") zip donutPrice()
donutStockAndPriceOperation.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出值:
Step 3: Zip the values of the first future with the second future
checking donut stock
Results (Some(10),3.25)
使用zipwith的例子:
println(s"\nStep 4: Call Future.zipWith and pass-through function qtyAndPriceF")
val donutAndPriceOperation = donutStock("vanilla donut").zipWith(donutPrice())(qtyAndPriceF)
donutAndPriceOperation.onComplete {
case Success(result) => println(s"Result $result")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 4: Call Future.zipWith and pass-through function qtyAndPriceF
checking donut stock
Result (10,3.25)
Future andThen
andThen后面可以跟一个自定义的PartialFunction,来处理Future返回的结果, 如下所示:
println(s"\nStep 2: Call Future.andThen with a PartialFunction")
val donutStockOperation = donutStock("vanilla donut")
donutStockOperation.andThen { case stockQty => println(s"Donut stock qty = $stockQty")}
输出结果:
Step 2: Call Future.andThen with a PartialFunction
checking donut stock
Donut stock qty = Success(10)
自定义threadpool
上面的例子中, 我们都是使用了scala的全局ExecutionContext: scala.concurrent.ExecutionContext.Implicits.global.
同样的,我们也可以自定义你自己的ExecutionContext。下面是一个使用java.util.concurrent.Executors的例子:
println("Step 1: Define an ExecutionContext")
val executor = Executors.newSingleThreadExecutor()
implicit val ec = scala.concurrent.ExecutionContext.fromExecutor(executor)
println("\nStep 2: Define a method which returns a Future")
import scala.concurrent.Future
def donutStock(donut: String): Future[Int] = Future {
// assume some long running database operation
println("checking donut stock")
10
}
println("\nStep 3: Call method which returns a Future")
val donutStockOperation = donutStock("vanilla donut")
donutStockOperation.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Thread.sleep(3000)
executor.shutdownNow()
recover() recoverWith() and fallbackTo()
这三个方法主要用来处理异常的,recover是用来从你已知的异常中恢复,如下所示:
println("\nStep 3: Call Future.recover to recover from a known exception")
donutStock("unknown donut")
.recover { case e: IllegalStateException if e.getMessage == "Out of stock" => 0 }
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
recoverWith()和recover()类似,不同的是他的返回值是一个Future。
println("\nStep 3: Call Future.recoverWith to recover from a known exception")
donutStock("unknown donut")
.recoverWith { case e: IllegalStateException if e.getMessage == "Out of stock" => Future.successful(0) }
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
fallbackTo()是在发生异常时,去调用指定的方法:
println("\nStep 3: Call Future.fallbackTo")
val donutStockOperation = donutStock("plain donut")
.fallbackTo(similarDonutStock("vanilla donut"))
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
promise
熟悉ES6的同学可能知道,promise是JS在ES6中引入的新特性,其主要目的是将回调转变成链式调动。
当然scala的promise和ES6的promise还是不一样的,我们看下scala中promise是怎么用的:
println("Step 1: Define a method which returns a Future")
import scala.concurrent.ExecutionContext.Implicits.global
def donutStock(donut: String): Int = {
if(donut == "vanilla donut") 10
else throw new IllegalStateException("Out of stock")
}
println(s"\nStep 2: Define a Promise of type Int")
val donutStockPromise = Promise[Int]()
println("\nStep 3: Define a future from Promise")
val donutStockFuture = donutStockPromise.future
donutStockFuture.onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
println("\nStep 4: Use Promise.success or Promise.failure to control execution of your future")
val donut = "vanilla donut"
if(donut == "vanilla donut") {
donutStockPromise.success(donutStock(donut))
} else {
donutStockPromise.failure(Try(donutStock(donut)).failed.get)
}
println("\nStep 5: Completing Promise using Promise.complete() method")
val donutStockPromise2 = Promise[Int]()
val donutStockFuture2 = donutStockPromise2.future
donutStockFuture2.onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
donutStockPromise2.complete(Try(donutStock("unknown donut")))
上面例子中我们使用了 Promise.success, Promise.failure, Promise.complete() 来控制程序的运行。
更多教程请参考 flydean的博客
Scala教程之:Future和Promise的更多相关文章
- scala教程之:可见性规则
文章目录 public Protected private scoped private 和 scoped protected 和java很类似,scala也有自己的可见性规则,不同的是scala只有 ...
- Scala教程之:深入理解协变和逆变
文章目录 函数的参数和返回值 可变类型的变异 在之前的文章中我们简单的介绍过scala中的协变和逆变,我们使用+ 来表示协变类型:使用-表示逆变类型:非转化类型不需要添加标记. 假如我们定义一个cla ...
- Scala教程之:Either
在之前的文章中我们提到了Option,scala中Option表示存在0或者1个元素,如果在处理异常的时候Option就会有很大的限制,因为Option如果返回None,那么我并不知道具体的异常到底是 ...
- Scala教程之:可变和不变集合
文章目录 mutable HashMap immutable HashMap 集合在程序中是非常有用的,只有用好集合才能真正感受到该语言的魅力.在scala中集合主要在三个包里面:scala.coll ...
- Scala教程之:PartialFunction
Scala中有一个很有用的traits叫PartialFunction,我看了下别人的翻译叫做偏函数,但是我觉得部分函数更加确切. 那么PartialFunction是做什么用的呢?简单点说Parti ...
- Scala教程之:Enumeration
Enumeration应该算是程序语言里面比较通用的一个类型,在scala中也存在这样的类型, 我们看下Enumeration的定义: abstract class Enumeration (init ...
- Scala教程之:Option-Some-None
文章目录 Option和Some Option和None Option和模式匹配 在java 8中,为了避免NullPointerException,引入了Option,在Scala中也有同样的用法. ...
- Scala教程之:scala的参数
文章目录 默认参数值 命名参数 scala的参数有两大特点: 默认参数值 命名参数 默认参数值 在Scala中,可以给参数提供默认值,这样在调用的时候可以忽略这些具有默认值的参数. def log(m ...
- Scala教程之:可扩展的scala
文章目录 隐式类 限制条件 字符串插值 s 字符串插值器 f 插值器 raw 插值器 自定义插值器 Scala是扩展的,Scala提供了一种独特的语言机制来实现这种功能: 隐式类: 允许给已有的类型添 ...
随机推荐
- python常用模块 以及第三方导入
python常用模块 1模块的分类 标准模块(内置模块)( 标准库 )300 第三方模块 18万 pip install 直接通过pip安装 软件一般会被自动安装你python安装目录的这个子目录里 ...
- stm32:extern关键字
参考:http://c.biancheng.net/view/404.html 1.在一个文件中: #include <stdio.h> int max(int x,int y); int ...
- 数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始推导公式
目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions ...
- pm2 开机启动egg项目
1.在服务器上安装PM2 npm install pm2 -g 2.对PM2进行更新 pm2 update 3.进入服务器中egg项目更目录,并新建server.js文件,并在其中写入以下代码 con ...
- python socket简介
一.socket是什么 socket是应用层与TCP/IP协议通信的中间软件抽象层,它是一组接口.在设计模式中,socket其实就是一个门面模式,它把复杂的TCP/IP协议隐藏在socket接口后面, ...
- Java第二天,类的概念,属性和方法的使用
上文中我们已近说到过了,Java是一种面向对象的编程语言,对象是用类来创建的,就比如世界上有无数个父亲,但是他们都有一个共同的属性--男人.也就是说某个父亲这个对象属于男人这个类.类是Java必不可少 ...
- 文件的读写 - open
#写文件,r路径\n 空格\t 缩进# fan=open(r'C:/Users/demiyangping_v/Desktop/fan.txt','w', encoding='utf-8')# fan. ...
- 数据库里账号的密码,需要怎样安全的存放?—— 密码哈希(Password Hash)
最早在大学的时候,只知道用 MD5 来存用户的账号的密码,但其实这非常不安全,而所用到的哈希函数,深入挖掘,也发现并不简单-- 一.普通的 Hash 函数 哈希(散列)函数是什么就不赘述了. 1.不推 ...
- 实时OLAP分析利器Druid介绍
文章目录 前言 Druid介绍 主要特性 基础概念 数据格式 数据摄入 数据存储 数据查询 查询类型 架构 运维 OLAP方案对比 使用场景 使用建议 参考 近期主题 前言 项目早期.数据(报表分析) ...
- cgdb使用方法
cgdb --args [exe_name] [arg1] [arg2] [arg3] [...] 进入代码窗口 按ESC键 进入调试窗口 按i键 调试命令 r 运行 n 单步执行(不进入函数) s ...