TC SRM498 Div1 1000PT(容斥原理+DP)
【\(Description\)】
网格中每步可以走\((0,\cdots M_x,0\cdots M_y)\)中任意非零向量,有\(K\)种向量不能走,分别是\((r_1,r_1),(r_2,r_2),\cdots , (r_K,r_K)\)。 \(r_i\)一定是\(10\)的倍数。求从\((0,0)\)走到\((Tx,Ty)\)且走\(R\)步的方案数( \(Tx,Ty,Mx,My\leq 800,R\leq 1600,K\leq 50\))
无 【\(Input\;Sample\)】
无 【\(Output\;Sample\)】
【朴素做法一】
设\(F_{i,x,y}\)表示走\(i\)步到\((x,y)\)的方案数
\]
\]
状态枚举\(i,x,y\),状态转移枚举\(a,b\)
\(O(1600\times 800^4\))
【朴素做法二】
在做法一的算法考虑如何优化。
我们注意到:状态转移这个东西,如果排除掉那\(K\)个不能走的向量,相当于对一个\(Mx\times My\)的矩阵求和
而这个东西是可以用二维前缀和维护的。所以我们只需枚举那\(K\)个不能走的向量,实现\(O(K)\)的转移
这里我们把\(K=50\)这个常数忽略掉
\(O(1600\times 800^2\))
【正解】
还是这个状态转移方程:
\]
我们发现:\(x,y\)是相互独立的,也就是说\(x\)轴上的转移与\(y\)轴上的转移是没有关系的
所以我们完全可以开两个数组:
\(f_{i,x}\)表示在一维上走\(i\)步到横坐标为\(x\)的方案数,\(g_{i,y}\)表示在一维上走\(i\)步到纵坐标为\(y\)的方案数
由此可得:
\]
通过前缀和维护,即可\(O(R\times Tx)=O(1600\times 800)\)完成\(DP\)
这只是\(K=0\)的情况,如何排除那些不合法的步数?
我们设\(h_{i,z}\)表示走\(i\)步全都不合法,走到\((10z,10z)\)的方案数(\(r_i\)一定是\(10\)的倍数)
\]
还有一个细节,由于\((0,0)\)也是不合法的,那就添加一个\(r_0=0\)即可
这就要用到容斥原理了。
即可得到答案:
\]
这里乘上\(C_R^i\)是因为我们并不知道那\(i\)个不合法的步是那几步
最后这个容斥的复杂度是\(O(R\times \frac{min(Tx,Ty)}{10})=O(1600\times 80)\)
那么就做出来了
代码我就不贴了吧,因为只要想出做法,就只是一个简单的\(DP\)了。
主要考查的是思维
TC SRM498 Div1 1000PT(容斥原理+DP)的更多相关文章
- [CF245H] Queries for Number of Palindromes (容斥原理dp计数)
题目链接:http://codeforces.com/problemset/problem/245/H 题目大意:给你一个字符串s,对于每次查询,输入为一个数对(i,j),输出s[i..j]之间回文串 ...
- 2018.07.13 [HNOI2015]落忆枫音(容斥原理+dp)
洛谷的传送门 bzoj的传送门 题意简述:在DAG中增加一条有向边,然后询问新图中一共 有多少个不同的子图为"树形图". 解法:容斥原理+dp,先考虑没有环的情况,经过尝试不难发现 ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- Topcoder SRM 698 Div1 250 RepeatString(dp)
题意 [题目链接]这怎么发链接啊..... Sol 枚举一个断点,然后类似于LIS一样dp一波 这个边界条件有点迷啊..fst了两遍... #include<bits/stdc++.h> ...
- bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】
当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...
- 「模拟赛20191019」B 容斥原理+DP计数
题目描述 将\(n\times n\)的网格黑白染色,使得不存在任意一行.任意一列.任意一条大对角线的所有格子同色,求方案数对\(998244353\)取模的结果. 输入 一行一个整数\(n\). 输 ...
- ARC093F Dark Horse 容斥原理+DP
题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...
随机推荐
- PHP函数:json_last_error
json_last_error() - 返回 JSON 编码解码时最后发生的错误.. 说明: json_last_error ( void ) : int 参数: 无 返回值: 返回一个整型(int ...
- [转]sql二次注入
01 二次注入原理 二次注入可以理解为,攻击者构造的恶意数据存储在数据库后,恶意数据被读取并进入到SQL查询语句所导致的注入.防御者可能在用户输入恶意数据时对其中的特殊字符进行了转义处理,但在恶意数据 ...
- bytectf2019 boring_code的知识学习&&无参数函数执行&&上海市大学生CTF_boring_code+
参赛感悟 第三次还是第二次参加这种CTF大赛了,感悟和学习也是蛮多的,越发感觉跟大佬的差距明显,但是还是要努力啊,都大三了,也希望出点成绩.比赛中一道WEB都没做出来,唯一有点思路的只有EZCMS,通 ...
- 如何使用IE9浏览器自带开发人员工具捕获网页请求
我们在通过浏览器访问一个网页的时候,有时候会遇到页面不能正常显示,图片不能正常加载的问题. 如果我们需要知道浏览器打开该网页时,网页中每个元素的加载情况.这时,我们便可以借助浏览器自带开发人员工具,来 ...
- share sdk
新浪微博 http://open.weibo.com 腾讯微博 http://dev.t.qq.com QQ空间 ...
- Apache Hudi集成Apache Zeppelin实战
1. 简介 Apache Zeppelin 是一个提供交互数据分析且基于Web的笔记本.方便你做出可数据驱动的.可交互且可协作的精美文档,并且支持多种语言,包括 Scala(使用 Apache Spa ...
- CSS中“~”(波浪号)、“,”(逗号)、“+”(加号)、“>”(大于号)、“ ”(空格)详解
“~”:$('pre ~ brother')表示获取pre节点的后面的所有兄弟节点,相当于nextAll()方法: “+”:$('pre + nextbrother')表示获得pre节点的下一个兄弟节 ...
- PHP 获取前两页的url地址
通过隐藏表单控件 <input type="hidden" name="prevurl" value="<?php echo $_SERV ...
- 给动态ajax添加的元素添加click事件
$(document).on('click','div',function(){alert(1)}); .live()方法也是可以的
- 预测球队比赛结果及利用pyinstaller打包文件
一.预测乒乓球球队比赛成绩 1.乒乓球比赛规则 一局比赛:在一局比赛中,先得11分的一方为胜方:10平后,先多得2分的一方为胜方. 一场比赛:单打的淘汰赛采用七局四胜制,双打淘汰赛和团体赛采用五局三胜 ...