HMM-前向后向算法理解与实现(python)

HMM-维特比算法理解与实现(python)

解码问题

  • 给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到最可能的状态序列 \(I^∗=\{i^∗_1,i^∗_2,...i^∗_T\}\)

近似算法

  • 在每个时刻 \(t\) 选择最可能的状态,得到对应的状态序列

根据HMM-前向后向算法计算时刻 \(t\) 处于状态 \(i^*_t\) 的概率:

\[i^∗_t=argmax[\gamma_t(i)],t=1,2,...T\\
\gamma_t(i) = \frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}
\]

但是无法保证得到的解是全局最优解

维特比算法

维特比算法的基础可以概括为下面三点(来源于吴军:数学之美):

  1. 如果概率最大的路径经过篱笆网络的某点,则从起始点到该点的子路径也一定是从开始到该点路径中概率最大的。

  2. 假定第 t 时刻有 k 个状态,从开始到 t 时刻的 k 个状态有 k 条最短路径,而最终的最短路径必然经过其中的一条。

  3. 根据上述性质,在计算第 t+1 时刻的最短路径时,只需要考虑从开始到当前的k个状态值的最短路径和当前状态值到第 t+1 时刻的最短路径即可。如求t=3时的最短路径,等于求t=2时,从起点到当前时刻的所有状态结点的最短路径加上t=2t=3的各节点的最短路径。

通俗理解维特比算法,对上面三点加深理解

假如你从S和E之间找一条最短的路径,最简单的方法就是列出所有可能的路径 (\(O(T^N)\)),选出最小的,显然时间复杂度太高。怎么办?(摘自[3])

使用维特比算法

S到A列的路径有三种可能:S-A1,S-A2,S-A3,如下图

S-A1,S-A2,S-A3 中必定有一个属于全局最短路径。继续往右,到了B列

对B1:

会产生3条路径:

S-A1-B1,S-A2-B1,S-A3-B1

假设S-A3-B1是最短的一条,删掉其他两条。得到

对B2:

会产生3条路径:

S-A1-B2,S-A2-B2,S-A3-B2

假设S-A1-B2是最短的一条,删掉其他两条。得到

对B3:

会产生3条路径:

S-A1-B3,S-A2-B3,S-A3-B3

假设S-A2-B3是最短的一条,删掉其他两条。得到

现在我们看看对B列的每个节点有哪些,回顾维特比算法第二点

假定第 t 时刻有 k 个状态,从开始到 t 时刻的 k 个状态有 k 条最短路径,而最终的最短路径必然经过其中的一条

B列有三个节点,所以会有三条最短路径,最终的最短路径一定会经过其中一条。如下图

同理,对C列,会得到三条最短路径,如下图

到目前为止,仍然无法确定哪条属于全局最短。最后,我们继续看E节点

最终发现最短路径为S-A1-B2-C3-E

数学描述

在上述过程中,对每一列(每个时刻)会得到对应状态数的最短路径。在数学上如何表达?记录路径的最大概率值 $ \delta_t(i)$ 和对应路径经过的节点 \(\psi_t(i)\)。

定义在时刻 \(t\) 状态为 \(i\) 的所有单条路径中概率最大值为

\[\delta_{t}(i)=\max _{i_{1}, i_{2}, \ldots, i_{t-1}} P\left(i_{t}=i, i_{t-1}, \ldots, i_{1}, o_{t}, \ldots, o_{1} | \lambda\right), i=1,2, \ldots, N
\]

递推公式

\[\begin{aligned} \delta_{t+1}(i) &=\max _{i_{1}, i_{2}, \ldots, i_{t}} P\left(i_{t+1}=i, i_{t}, \ldots, i_{1}, o_{t+1}, \ldots, o_{1} | \lambda\right) \\ &=\max _{1 \leq j \leq N}\left[\delta_{t}(j) a_{j i}\right] b_{i}\left(o_{t+1}\right), i=1,2, \ldots, N ; t=1,2, \ldots, T-1 \end{aligned}
\]

定义在时刻 \(t\) 状态为 \(i\) 的所有单条路径中,概率最大路径的第 \(t - 1\) 个节点为

\[\psi_{t}(i)=\arg \max _{1 \leq j \leq N}\left[\delta_{t-1}(j) a_{j i}\right], i=1,2, \ldots, N
\]

维特比算法步骤:

​ step1:初始化

\[\begin{aligned}&\delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), i=1,2, \ldots, N\\&\psi_{1}(i)=0, i=1,2, \ldots, N\\\end{aligned}
\]

​ step2:递推,对 \(t=2,3,...,T\)

\[\delta_{t}(i)=\max _{1 \leq j \leq N}\left[\delta_{t-1}(j) a_{j i}\right] b_{i}\left(o_{t}\right), i=1,2, \ldots, N \\\psi_{t}(i)=\arg \max _{1 \leq j \leq N}\left[\delta_{t-1}(j) a_{j i}\right], i=1,2, \ldots, N \\
\]

​ step3:计算时刻 \(T\) 最大的 \(\delta_T(i)\) ,即为最可能隐藏状态序列出现的概率。计算时刻\(T\)最大的 \(\psi_T(i)\) ,即为时刻\(T\)最可能的隐藏状态。

\[P^{*}=\max _{1 \leq i \leq N} \delta_{T}(i) \quad i_{T}^{*}=\arg \max _{1 \leq i \leq N} \delta_{T}(i)
\]

​ step4:最优路径回溯,对\(t=T-1,...,1\)

\[i_{t}^{*}=\psi_{t+1}\left(i_{t+1}^{*}\right)\\I^*=(i_{1}^{*},i_{2}^{*},...,i_{T}^{*})
\]

代码实现

假设从三个 袋子 {1,2,3}中 取出 4 个球 O={red,white,red,white},模型参数\(\lambda = (A,B,\pi)\) 如下,计算状态序列,即取出的球来自哪个袋子

#状态 1 2 3
A = [[0.5,0.2,0.3],
[0.3,0.5,0.2],
[0.2,0.3,0.5]] pi = [0.2,0.4,0.4] # red white
B = [[0.5,0.5],
[0.4,0.6],
[0.7,0.3]]
def hmm_viterbi(A,B,pi,O):
T = len(O)
N = len(A[0]) delta = [[0]*N for _ in range(T)]
psi = [[0]*N for _ in range(T)] #step1: init
for i in range(N):
delta[0][i] = pi[i]*B[i][O[0]]
psi[0][i] = 0 #step2: iter
for t in range(1,T):
for i in range(N):
temp,maxindex = 0,0
for j in range(N):
res = delta[t-1][j]*A[j][i]
if res>temp:
temp = res
maxindex = j delta[t][i] = temp*B[i][O[t]]#delta
psi[t][i] = maxindex #step3: end
p = max(delta[-1])
for i in range(N):
if delta[-1][i] == p:
i_T = i #step4:backtrack
path = [0]*T
i_t = i_T
for t in reversed(range(T-1)):
i_t = psi[t+1][i_t]
path[t] = i_t
path[-1] = i_T return delta,psi,path A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_viterbi(A,B,pi,O)

结果

references:

[1]https://www.cnblogs.com/kaituorensheng/archive/2012/12/04/2802140.html

[2] https://blog.csdn.net/hudashi/java/article/details/87875259

[3] https://www.zhihu.com/question/20136144

HMM-维特比算法理解与实现(python)的更多相关文章

  1. Java实现:抛开jieba等工具,写HMM+维特比算法进行词性标注

    一.前言:词性标注 二.经典维特比算法(Viterbi) 三.算法实现 四.完整代码 五.效果演示: 六.总结 一.前言:词性标注 词性标注(Part-Of-Speech tagging, POS t ...

  2. HMM——维特比算法(Viterbi algorithm)

    1. 前言维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列. 也就是说给定 ...

  3. 详解隐马尔可夫模型(HMM)中的维特比算法

    笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 4. 隐马尔可夫模型与序列标注 第3章的n元语法模型从词语接续的流畅度出发,为全切 ...

  4. 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...

  5. 维特比算法Python实现

    前言 维特比算法是隐马尔科夫问题的一个基本问题算法.维特比算法解决的问题是已知观察序列,求最可能的标注序列. 什么是维特比算法? 维特比算法尽管是基于严格的数学模型的算法,但是维特比算法毕竟是算法,因 ...

  6. viterbi维特比算法和隐马尔可夫模型(HMM)

    隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENGG 5202 Pattern Recognit ...

  7. 【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现

    1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(V ...

  8. HMM-前向后向算法理解与实现(python)

    目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...

  9. HMM 自学教程(六)维特比算法

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

随机推荐

  1. PHP函数:php_sapi_name

    php_sapi_name()  - 返回 web 服务器和 PHP 之间的接口类型. SAPI(Server Application Programming Interface)服务器应用程序编程接 ...

  2. testNG 预期异常、忽略测试、超时测试

    通过@Test 注解的参数值实现如下的几种测试 一.通过 @Test(expectedExceptions=异常类名) 参数实现到达 预期指定的异常效果 @Test(expectedException ...

  3. 如何将dotnet core webapi发布到docker中…

    如何将dotnet core webapi发布到docker中 今天想起来撸一下docker,中途还是遇到些问题,但是这些问题都是由于路径什么的导致不正确,在这儿还是记录下操作过程,今天是基于wind ...

  4. Spring5:控制反转

    二.Spring IOC控制反转 1:IOC推导 >传统业务调用编程 定义一个userDao接口:UserDao package com.spring; public interface Use ...

  5. bash cookbook

    目录 简介 变量 静态变量 变量操作 数组 应用 四则运算 条件测试 整数测试 文件测试 字符测试 组合条件测试 选择语句 循环语句 for--有限循环 while--无线循环 until conti ...

  6. Ubuntu中设置共享文件夹

    1,设备--->共享文件夹--->共享文件夹 2,小加号---->添加路径(自己设置主机上任意的路径)--->设置名称(我的是gx)---->选中自动挂载和固定分配--- ...

  7. 解决Cannot use a scalar value as an array

    这是类型转换的问题,看看上方代码是不是先把布尔值或者0值赋给了一个变量,然后下面循环中又把这个变量当作数组用了

  8. 双链表【参照redis链表结构】

    参照了Redis里面的双链表结构,可以说是完全复制粘贴,redis的双链表还是写的很通俗易懂的,没有什么花里胡哨的东西,但是redis还有个iter迭代器的结构来遍历链表.我这里就没有实现了,只是实现 ...

  9. Bubble Cup 11 - Finals [Online Mirror, Div. 1]题解 【待补】

    Bubble Cup 11 - Finals [Online Mirror, Div. 1] 一场很好玩的题啊! I. Palindrome Pairs 枚举哪种字符出现奇数次. G. AI robo ...

  10. JS基础入门篇(十)— 数组方法

    1.join 作用: 将数组通过指定字符拼接成字符串.语法: string arr.join([separator = ',']);参数: separator可选,如果省略的话,默认为一个逗号.如果 ...