Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元
代码如下

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #创建一个简单的神经网络 784个像素点对应784个数 因此输入层是784个神经元 输出层是10个神经元 不含隐层
#最后准确率在92%左右
W = tf.Variable(tf.zeros([784,10])) #生成784行 10列的全0矩阵
b = tf.Variable(tf.zeros([1,10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(21): #21个epoch 把所有的图片训练21次
for batch in range(n_batch): #
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

结果如下

Iter 0,Testing Accuracy 0.8304
Iter 1,Testing Accuracy 0.8704
Iter 2,Testing Accuracy 0.8821
Iter 3,Testing Accuracy 0.8876
Iter 4,Testing Accuracy 0.8932
Iter 5,Testing Accuracy 0.8968
Iter 6,Testing Accuracy 0.8995
Iter 7,Testing Accuracy 0.9019
Iter 8,Testing Accuracy 0.9033
Iter 9,Testing Accuracy 0.9048
Iter 10,Testing Accuracy 0.9065
Iter 11,Testing Accuracy 0.9074
Iter 12,Testing Accuracy 0.9084
Iter 13,Testing Accuracy 0.909
Iter 14,Testing Accuracy 0.9094
Iter 15,Testing Accuracy 0.9112
Iter 16,Testing Accuracy 0.9117
Iter 17,Testing Accuracy 0.9128
Iter 18,Testing Accuracy 0.9127
Iter 19,Testing Accuracy 0.9132
Iter 20,Testing Accuracy 0.9144

接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降低了,慢慢调参吧

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 50
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([784,100]))
biase_L1 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #使用正切函数作为激活函数 Weights_L2 = tf.Variable(tf.random_normal([100,100]))
biase_L2 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2)+biase_L2
L2 = tf.nn.tanh(Wx_plus_b_L2) #使用正切函数作为激活函数 #定义神经网络输出层
Weights_L3 = tf.Variable(tf.random_normal([100,10]))
biase_L3 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L3 = tf.matmul(L2,Weights_L3) + biase_L3
prediction = tf.nn.tanh(Wx_plus_b_L3) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(500):
for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))


Iter 487,Testing Accuracy 0.8847
Iter 488,Testing Accuracy 0.8853
Iter 489,Testing Accuracy 0.878
Iter 490,Testing Accuracy 0.8861
Iter 491,Testing Accuracy 0.8863
Iter 492,Testing Accuracy 0.8784
Iter 493,Testing Accuracy 0.8855
Iter 494,Testing Accuracy 0.8787
Iter 495,Testing Accuracy 0.881
Iter 496,Testing Accuracy 0.8837
Iter 497,Testing Accuracy 0.8817
Iter 498,Testing Accuracy 0.8837
Iter 499,Testing Accuracy 0.8866
Tensorflow学习教程------普通神经网络对mnist数据集分类的更多相关文章
- TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...
- Tensorflow学习教程------实现lenet并且进行二分类
#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- Tensorflow学习教程------过拟合
Tensorflow学习教程------过拟合 回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机 ...
- deep_learning_LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...
随机推荐
- C# log4net相关配置说明
添加相关文件到工程 链接: https://pan.baidu.com/s/1o83Juo6 密码: inkg 下载附件, 把里的log4net.dll 和 log4net.config 复制到工程目 ...
- Day4 - M - Roads in Berland CodeForces - 25C
There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Eac ...
- C++ 语言程序设计(清华大学)2
面向对象 1.面向对象程序基本特点:抽象.封装.继承.多态 2.类分为:公有类型成员public(接口),私有类型成员private(本类函数访问,类外要用友元函数访问),保护类型成员protect( ...
- SpringBoot-集成通用mapper
SpringBoot-集成通用mapper SpringBoot-集成通用mapper 我们在SpringBoot中整合了MyBatis,但是大量重复的增删改查还是很头疼的问题,MyBatis也给 ...
- Centos7忘记mysql的root用户密码
1.先停止mysql服务 [root@CentOS ~]# ps -ef | grep mysql root : pts/ :: /bin/sh /usr/local/mysql/bin/mysql ...
- NOIP2016天天爱跑步解题思路
算法:LCA,树上差分+(乱搞) 如果有写错的地方请大佬更正 对于100%数据: u表示起点,v表示终点 对于一条u到v的路径,先讨论LCA!=u&&LCA!=v的情况: 分为u到LC ...
- 3.python进制及其之间的转换
- Spring 实战4学习笔记(转)
http://blog.csdn.net/21aspnet/article/details/51386557 1.IOC装配Bean 参考[spring实战4 2.2],作者提倡无XML配置化. 1. ...
- XPath--快速获取XML数据的节点或属性
转载自 XPath可以快速定位到Xml中的节点或者属性.XPath语法很简单,但是强大够用,它也是使用xslt的基础知识.示例Xml: <?xml version="1.0" ...
- 负载均衡与CDN简介
负载均衡 负载均衡是高可用网络基础架构的的一个关键组成部分,有了负载均衡,我们通常可以将我们的应用服务器部署多台,然后通过负载均衡将用户的请求分发到不同的服务器用来提高网站.应用.数据库或其他服务的性 ...