Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元
代码如下

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #创建一个简单的神经网络 784个像素点对应784个数 因此输入层是784个神经元 输出层是10个神经元 不含隐层
#最后准确率在92%左右
W = tf.Variable(tf.zeros([784,10])) #生成784行 10列的全0矩阵
b = tf.Variable(tf.zeros([1,10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(21): #21个epoch 把所有的图片训练21次
for batch in range(n_batch): #
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

结果如下

Iter 0,Testing Accuracy 0.8304
Iter 1,Testing Accuracy 0.8704
Iter 2,Testing Accuracy 0.8821
Iter 3,Testing Accuracy 0.8876
Iter 4,Testing Accuracy 0.8932
Iter 5,Testing Accuracy 0.8968
Iter 6,Testing Accuracy 0.8995
Iter 7,Testing Accuracy 0.9019
Iter 8,Testing Accuracy 0.9033
Iter 9,Testing Accuracy 0.9048
Iter 10,Testing Accuracy 0.9065
Iter 11,Testing Accuracy 0.9074
Iter 12,Testing Accuracy 0.9084
Iter 13,Testing Accuracy 0.909
Iter 14,Testing Accuracy 0.9094
Iter 15,Testing Accuracy 0.9112
Iter 16,Testing Accuracy 0.9117
Iter 17,Testing Accuracy 0.9128
Iter 18,Testing Accuracy 0.9127
Iter 19,Testing Accuracy 0.9132
Iter 20,Testing Accuracy 0.9144

接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降低了,慢慢调参吧

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 50
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([784,100]))
biase_L1 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #使用正切函数作为激活函数 Weights_L2 = tf.Variable(tf.random_normal([100,100]))
biase_L2 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2)+biase_L2
L2 = tf.nn.tanh(Wx_plus_b_L2) #使用正切函数作为激活函数 #定义神经网络输出层
Weights_L3 = tf.Variable(tf.random_normal([100,10]))
biase_L3 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L3 = tf.matmul(L2,Weights_L3) + biase_L3
prediction = tf.nn.tanh(Wx_plus_b_L3) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(500):
for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))


Iter 487,Testing Accuracy 0.8847
Iter 488,Testing Accuracy 0.8853
Iter 489,Testing Accuracy 0.878
Iter 490,Testing Accuracy 0.8861
Iter 491,Testing Accuracy 0.8863
Iter 492,Testing Accuracy 0.8784
Iter 493,Testing Accuracy 0.8855
Iter 494,Testing Accuracy 0.8787
Iter 495,Testing Accuracy 0.881
Iter 496,Testing Accuracy 0.8837
Iter 497,Testing Accuracy 0.8817
Iter 498,Testing Accuracy 0.8837
Iter 499,Testing Accuracy 0.8866
Tensorflow学习教程------普通神经网络对mnist数据集分类的更多相关文章
- TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...
- Tensorflow学习教程------实现lenet并且进行二分类
#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
- Tensorflow学习教程------过拟合
Tensorflow学习教程------过拟合 回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机 ...
- deep_learning_LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...
随机推荐
- 管理和安装 chart【转】
安装 chart 当我们觉得准备就绪,就可以安装 chart,Helm 支持四种安装方法: 安装仓库中的 chart,例如:helm install stable/nginx 通过 tar 包安装,例 ...
- 记一次Redis+Getshell经验分享
前言: 当我们接到一个授权渗透测试的时候,常规漏洞如注入.文件上传等尝试无果后,扫描端口可能会发现意外收获. 知己知彼乃百战不殆,Redis介绍: 简单来说 redis 就是一个Key-Value类型 ...
- C#获取屏幕分辨率率
C#获取屏幕的分辨率 在C#中获取当前屏幕的分辨率的方法 1:rectangle类. 命名空间为:system.Drawing. system.Drawing.Rectangle rec=Scre ...
- python scipy优化器模块(optimize)
pyhton数据处理与分析之scipy优化器及不同函数求根 1.Scipy的优化器模块optimize可以用来求取不同函数在多个约束条件下的最优化问题,也可以用来求取函数在某一点附近的根和对应的函数值 ...
- B. Yet Another Crosses Problem
B. Yet Another Crosses Problem time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- 从0开始自己配置一个vps虚拟服务器(1)
我前几年买的虚拟机都被我荒废了,我已经配置过很多遍了,但是从来没有真的用过.因为我前几个月之前又新买了一个便宜的服务,准备写新的东西.供应商pacificrack,真的很烂,一直断,控制面板还打不开, ...
- C++ 根据日期判断星期几
int CaculateWeekDay(int y,int m, int d) { ||m==) { m+=; y--; } *m+*(m+)/+y+y/-y/+y/)%; ; }
- cf221 D. Little Elephant and Array
题解真的是太神奇了2333 用离线和树状数组(为什么感觉和HH的项链是的,什么鬼),比较巧妙的是他把整个数列分成几段.用一个vector来记录每个数出现的位置.一共就是data[a[i]][sz]-- ...
- 二十四、SAP中打开帮助文件
一.在代码输入界面,选中一个关键词,按一下F1,或者问号 二.显示出的帮助内容
- 152-PHP htmlspecialchars函数
<?php //定义一个HTML代码字符串 $str=<<<HTM <a href=#><b><i>到一个网址的链接<>< ...