首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元

代码如下

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #创建一个简单的神经网络 784个像素点对应784个数 因此输入层是784个神经元 输出层是10个神经元 不含隐层
#最后准确率在92%左右
W = tf.Variable(tf.zeros([784,10])) #生成784行 10列的全0矩阵
b = tf.Variable(tf.zeros([1,10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(21): #21个epoch 把所有的图片训练21次
for batch in range(n_batch): #
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

结果如下

Iter 0,Testing Accuracy 0.8304
Iter 1,Testing Accuracy 0.8704
Iter 2,Testing Accuracy 0.8821
Iter 3,Testing Accuracy 0.8876
Iter 4,Testing Accuracy 0.8932
Iter 5,Testing Accuracy 0.8968
Iter 6,Testing Accuracy 0.8995
Iter 7,Testing Accuracy 0.9019
Iter 8,Testing Accuracy 0.9033
Iter 9,Testing Accuracy 0.9048
Iter 10,Testing Accuracy 0.9065
Iter 11,Testing Accuracy 0.9074
Iter 12,Testing Accuracy 0.9084
Iter 13,Testing Accuracy 0.909
Iter 14,Testing Accuracy 0.9094
Iter 15,Testing Accuracy 0.9112
Iter 16,Testing Accuracy 0.9117
Iter 17,Testing Accuracy 0.9128
Iter 18,Testing Accuracy 0.9127
Iter 19,Testing Accuracy 0.9132
Iter 20,Testing Accuracy 0.9144

接下来是含一个隐层的神经网络,输入层是784个神经元,两个隐层都是100个神经元,输出层是10个神经元,迭代500次,最后准确率在88%左右,汗。。。。准确率反而降低了,慢慢调参吧

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 50
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32, [None,784]) #输入图像
y = tf.placeholder(tf.float32, [None,10]) #输入标签 #定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([784,100]))
biase_L1 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #使用正切函数作为激活函数 Weights_L2 = tf.Variable(tf.random_normal([100,100]))
biase_L2 = tf.Variable(tf.zeros([1,100]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2)+biase_L2
L2 = tf.nn.tanh(Wx_plus_b_L2) #使用正切函数作为激活函数 #定义神经网络输出层
Weights_L3 = tf.Variable(tf.random_normal([100,10]))
biase_L3 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L3 = tf.matmul(L2,Weights_L3) + biase_L3
prediction = tf.nn.tanh(Wx_plus_b_L3) #二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在布尔型列表中
#argmax能给出某个tensor对象在某一维上的其数据最大值所在的索引值
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(500):
for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels})
print ("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
Iter 487,Testing Accuracy 0.8847
Iter 488,Testing Accuracy 0.8853
Iter 489,Testing Accuracy 0.878
Iter 490,Testing Accuracy 0.8861
Iter 491,Testing Accuracy 0.8863
Iter 492,Testing Accuracy 0.8784
Iter 493,Testing Accuracy 0.8855
Iter 494,Testing Accuracy 0.8787
Iter 495,Testing Accuracy 0.881
Iter 496,Testing Accuracy 0.8837
Iter 497,Testing Accuracy 0.8817
Iter 498,Testing Accuracy 0.8837
Iter 499,Testing Accuracy 0.8866

Tensorflow学习教程------普通神经网络对mnist数据集分类的更多相关文章

  1. TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  2. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  3. 深度学习(一)之MNIST数据集分类

    任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...

  4. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  5. Tensorflow学习教程------实现lenet并且进行二分类

    #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename ...

  6. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  7. Tensorflow学习教程------过拟合

    Tensorflow学习教程------过拟合   回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机 ...

  8. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  9. Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例

    紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...

随机推荐

  1. 怎样管理Exchange Server 2013资源邮箱

    1. exchange资源邮箱介绍 这次将介绍Exchange Server 2013的资源邮箱相关内容. Exchange Server 2013的资源邮箱包含两类,其一为“会议室邮箱”,另一类是“ ...

  2. DBlink查看,创建于删除

    1.查看dblink select owner,object_name from dba_objects where object_type='DATABASE LINK'; 或者 select * ...

  3. UML图表示类之间的关系

    一.泛化(Generanization) 图: 泛化简单的说就是继承关系,在java中就是extend.表示一般与特殊的关系.如鸭子是鸟的一种,即有鸭子的特性也有鸟的共性.用带空心的三角箭头的实线指向 ...

  4. 整理jvm概念和原理详解以及gc机制

    注:源代码就是.java文件,JVM字节码就是.class文件 1. Java 堆(Java Heap):(1)是Java虚拟机所管理的内存中最大的一块.(2)在虚拟机启动的时候创建.堆是jvm所有线 ...

  5. 020、Java中字母大小写转换

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  6. 吴裕雄--天生自然java开发常用类库学习笔记:线程常用的操作方法

    class MyThread implements Runnable{ // 实现Runnable接口 public void run(){ // 覆写run()方法 for(int i=0;i< ...

  7. nginx安全参数

    Strict-Transport-Security Strict-Transport-Security,简称 HSTS.该响应头用于标识浏览器用 HTTPS 替代 HTTP 的方式去访问目标站点. 我 ...

  8. esxi 主机用户功能说明

    1.  root 用户 默认情况下,每个 ESXi 主机都有一个具有管理员角色的 root 用户帐户.该 root 用户帐户可用于本地管理,并可用于将主机连接到 vCenter Server. 此公共 ...

  9. redis的配置文件介绍

    目录 1.开头说明 2.INCLUDES 3.MODULES 4.NETWORK 5.GENERAL 6.SNAPSHOTTING 7.REPLICATION 8.SECURITY 9.CLIENTS ...

  10. 九十七、SAP中ALV事件之十,通过REUSE_ALV_COMMENTARY_WRITE函数来显示ALV的标题

    一.SE37查看REUSE_ALV_COMMENTARY_WRITE函数 二.查看一下导入 三.我们点击SLIS_T_LISTHEADER,来看一下类型 四.我们再看一下,这个info是60长度的字符 ...