keras-基于CNN网络的Mnist数据集分类

1.数据的载入和预处理

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import SGD,Adam
from keras.regularizers import l2
from keras.utils.vis_utils import plot_model
from matplotlib import pyplot as plt import os import tensorflow as tf # 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data() # 预处理
# 将(60000,28,28)转化为(-1,28,28,1),最后1是图片深度 x_train = x_train.reshape(-1,28,28,1)/255.0
x_test= x_test.reshape(-1,28,28,1)/255.0
# 将输出转化为one_hot编码
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)

2.创建网络打印训练数据# 创建网络

model = Sequential([

    # 创建卷积层提取特征,对卷积核进行正则化
Conv2D(input_shape=(28,28,1),filters=32,kernel_size=5,strides=1,padding='same',activation='relu',kernel_regularizer=l2(0.01)),
   # 池化层,对特征的筛选
   MaxPool2D(pool_size=(2,2),strides=2,padding='same'), Flatten(),
  
   Dense(units=128,input_dim=784,bias_initializer='one',activation='tanh'),
    Dropout(0.2),
Dense(units=10,bias_initializer='one',activation='softmax')
]) # 编译
# 自定义优化器
sgd = SGD(lr=0.1)
adma = Adam(lr=0.001)
# 运用交叉熵
model.compile(optimizer=adma,
loss='categorical_crossentropy',
# 得到训练过程中的准确率
metrics=['accuracy']) model.fit(x_train,y_train,batch_size=32,epochs=10,validation_split=0.2) # 评估模型
loss,acc = model.evaluate(x_test,y_test,)
print('\ntest loss',loss)
print('test acc',acc)

out:

Epoch 1/10

32/48000 [..............................] - ETA: 10:18 - loss: 2.7563 - acc: 0.1562
96/48000 [..............................] - ETA: 3:53 - loss: 2.6141 - acc: 0.1354

......

......

Epoch 10/10

45952/48000 [===========================>..] - ETA: 0s - loss: 0.0664 - acc: 0.9905
47616/48000 [============================>.] - ETA: 0s - loss: 0.0663 - acc: 0.9908
48000/48000 [==============================] - 2s 37us/step - loss: 0.0663 - acc: 0.9910 - val_loss: 0.0149 - val_acc: 0.9884

32/10000 [..............................] - ETA: 4s
3360/10000 [=========>....................] - ETA: 0s
5824/10000 [================>.............] - ETA: 0s
8512/10000 [========================>.....] - ETA: 0s
10000/10000 [==============================] - 0s 20us/step

test loss 0.015059704356454312
test acc 0.988

6.keras-基于CNN网络的Mnist数据集分类的更多相关文章

  1. 基于CNN网络的汉字图像字体识别及其原理

    现代办公要将纸质文档转换为电子文档的需求越来越多,目前针对这种应用场景的系统为OCR系统,也就是光学字符识别系统,例如对于古老出版物的数字化.但是目前OCR系统主要针对文字的识别上,对于出版物的版面以 ...

  2. 3.keras-简单实现Mnist数据集分类

    keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.util ...

  3. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  4. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  5. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  6. 深度学习(一)之MNIST数据集分类

    任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...

  7. CNN算法解决MNIST数据集识别问题

    网络实现程序如下 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 用于设置将记 ...

  8. keras基于卷积网络手写数字识别

    import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x ...

  9. 神经网络MNIST数据集分类tensorboard

    今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思 import te ...

随机推荐

  1. vue中使用mixins

    Mixins (混合或混入)——定义的是一个对象 1.概念:一种分发Vue组件可复用功能的非常灵活的方式.混入对象可以包含任意组件选项(组件选项:data.watch.computed.methods ...

  2. c++简单string实现

    string.h #pragma once class string { public: string(const char* str = nullptr); string(const string& ...

  3. 利用Python科学计算处理物理问题(和物理告个别)

    背景: 2019年初由于尚未学习量子力学相关知识,所以处于自学阶段.浅显的学习了曾谨言的量子力学一卷和格里菲斯编写的量子力学教材.注重将量子力学的一些基本概念了解并理解.同时老师向我们推荐了Quant ...

  4. xampp-apache配置

    我安装的软件是xampp-win32-1.8.2-0-VC9-installer 需要配置的文件有 httpd.conf httpd-default.conf httpd-info.conf http ...

  5. UIStackView上手教程

    https://www.jianshu.com/p/19fbf3ee2840 https://www.cnblogs.com/bokeyuanlibin/p/5693575.html https:// ...

  6. CF551B

    题目链接:http://codeforces.com/contest/551/problem/B 题目大意:给出字符串a, b, c.试图合理的安排a的字母顺序,使其中有尽可能多的与 c 或 b 相同 ...

  7. Unity自定义Log

    有如下两种方式,第一种借助了Unity自身的LogType枚举型:第二种则是纯粹地自己定义: public class Log { public Log(string message, UnityEn ...

  8. Java-建立一个AnalysisResult类,对成绩进行分析

    import java.io.*; import java.util.*; public class AnalysisResult { public static void main(String[] ...

  9. 0418部分HomeWork案例

    /* 月份 输入月份,对应返回该月份的天数 利用switch的穿透性,可将多个case合到一个代码块 */ import java.util.Scanner; class HomeWork5{ pub ...

  10. xshell行号显示

    xshell显示行号: 输入命令: vim ~/.vimrc 输入: set nu 之后在打开文件 就可以 看到行号显示.