首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例:

一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了.

 class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size) //输入层
self.relu = nn.ReLU() //隐藏网络:elu的功能是将输入的feature的tensor所有的元素中如果小于零的就取零。
self.fc2 = nn.Linear(hidden_size, num_classes) //输出层 def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out

  下面要看一下怎么调用和使用前馈神经网络的:为了提高运算效率,要把该网络优先使用GPU来进行运算.这里的输入尺寸和隐藏尺寸要和训练的图片保持一致的.

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = NeuralNet(input_size, hidden_size, num_classes).to(device)

  为了训练网络,都需要定义一个loss function来描述模型对问题的求解精度。loss越小,代表模型的结果和真实值偏差越小,这里使用CrossEntropyLoss()来计算.Adam,这是一种基于一阶梯度来优化随机目标函数的算法。详细的概念和推导我们后续再专门做分析.

criterion = nn.CrossEntropyLoss() //针对单目标分类问题, 结合了 nn.LogSoftmax() 和 nn.NLLLoss() 来计算 loss.
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) //优化器,设置学习的速度和使用的模型

  接下来就是训练模型了,训练模型这部分是有点绕的,首先我们来看代码,后面再针对各个函数做说明:

 total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels)  # Backward and optimize
optimizer.zero_grad() //把梯度置零,也就是把loss关于weight的导数变成0.
loss.backward()
optimizer.step()

  训练模型,首先把图片矩阵变换成25*25的矩阵单元.其次,把运算参数绑定到特定设备上.

  然后就是网络的前向传播了:

outputs = model(inputs)

  然后将输出的outputs和原来导入的labels作为loss函数的输入就可以得到损失了:

loss = criterion(outputs, labels)

  计算得到loss后就要回传损失。要注意的是这是在训练的时候才会有的操作,测试时候只有forward过程。

loss.backward()

  回传损失过程中会计算梯度,然后需要根据这些梯度更新参数,optimizer.step()就是用来更新参数的。optimizer.step()后,你就可以从optimizer.param_groups[0][‘params’]里面看到各个层的梯度和权值信息。

optimizer.step()

  测试这个模型,没有梯度的模型,这样就大大大额减少了内存的使用量和运算效率,这个测试模型,其实只有一个关键的语句就可以预测模型了,那就是:_, predicted = torch.max(outputs.data, 1).

with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
print(labels.size(0))
correct += (predicted == labels).sum().item()

  这里有个问题.训练好的数据怎么和预测联系起来呢?
训练输出的outputs也是torch.autograd.Variable格式,得到输出后(网络的全连接层的输出)还希望能到到模型预测该样本属于哪个类别的信息,这里采用torch.max。torch.max()的第一个输入是tensor格式,所以用outputs.data而不是outputs作为输入;第二个参数1是代表dim的意思,也就是取每一行的最大值,其实就是我们常见的取概率最大的那个index;第三个参数loss也是torch.autograd.Variable格式。
  总体源码:

 import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
input_size = 784
hidden_size = 500
num_classes = 10
#input_size = 84
#hidden_size = 50
#num_classes = 2
num_epochs = 5
batch_size = 100
learning_rate = 0.001 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True) test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out model = NeuralNet(input_size, hidden_size, num_classes).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
#print(predicted)
correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

  每日一言:人之所畏,不可不畏。

  参考文档:

1 https://blog.csdn.net/fireflychh/article/details/75516165

2 https://blog.csdn.net/kgzhang/article/details/77479737

3 https://github.com/pytorch/tutorials

神经网络架构PYTORCH-前馈神经网络的更多相关文章

  1. 神经网络架构PYTORCH-几个概念

    使用Pytorch之前,有几个概念需要弄清楚. 什么是Tensors(张量)? 这个概念刚出来的时候,物理科班出身的我都感觉有点愣住了,好久没有接触过物理学的概念了. 这个概念,在物理学中怎么解释呢? ...

  2. Tensorflow系列专题(四):神经网络篇之前馈神经网络综述

    目录: 神经网络前言 神经网络 感知机模型 多层神经网络 激活函数 Logistic函数 Tanh函数 ReLu函数 损失函数和输出单元 损失函数的选择 均方误差损失函数 交叉熵损失函数 输出单元的选 ...

  3. 神经网络架构PYTORCH-宏观分析

    基本概念和功能: PyTorch是一个能够提供两种高级功能的python开发包,这两种高级功能分别是: 使用GPU做加速的矢量计算 具有自动重放功能的深度神经网络从细的粒度来分,PyTorch是一个包 ...

  4. 神经网络架构PYTORCH-初相识(3W)

    who? Python是基于Torch的一种使用Python作为开发语言的开源机器学习库.主要是应用领域是在自然语言的处理和图像的识别上.它主要的开发者是Facebook人工智能研究院(FAIR)团队 ...

  5. 神经网络架构pytorch-MSELoss损失函数

    MSELoss损失函数中文名字就是:均方损失函数,公式如下所示: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 ...

  6. 深度学习基础-基于Numpy的多层前馈神经网络(FFN)的构建和反向传播训练

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及花书的读书笔记.本文将以多分类任务为例,介绍多层的前馈神经网络(Feed Forward Networks,FFN)加上 ...

  7. 怎样设计最优的卷积神经网络架构?| NAS原理剖析

    虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...

  8. 基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像

    摘要:本文中我们介绍的 AnimeGAN 就是 GitHub 上一款爆火的二次元漫画风格迁移工具,可以实现快速的动画风格迁移. 本文分享自华为云社区<AnimeGANv2 照片动漫化:如何基于 ...

  9. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

随机推荐

  1. HTML5-盒子的使用

    一. border-color border-width border-style 属性用法遵循顺时针顺序. border-top- border-left- border-bottom- borde ...

  2. .net webapi 接收 xml 格式数据的三种情况

    webapi 接收 xml 的三种方法 前段时间接到一个任务写一个小接口,要接收java端返回过来的短信xml数据. 刚拿到项目,我的第一想法是对方会以什么形式发送xml格式的数据给我呢,设想三种情况 ...

  3. python第十八天 多态 和 私有

    python的多态比较特别 多态, 字面意思,多种状态. 扩展下 -> 执行同样的操作,结果却不同. 对使用的操作者来说, 就是执行同一个方法, 得到了不同的结果. 在操作者看来,像是   具备 ...

  4. 快速解决PL/SQL Developer过期问题(无需注册码等复杂操作)

    第一步:在开始菜单中输入 :regedit  的指令,点击回车,进入注册表编辑器界面 第二步:在注册表里按HKEY_CURRENT_USER\Software\Allround Automations ...

  5. Java 初学UDP传输

    不谈理论,先举简单例子. 发送端代码: public class UDPDemo { public static void main(String[] args) throws Exception { ...

  6. js中的原型对象链

    由于原型对象也是一个对象,它也有自己的原型对象并继承对象中的属性,这就是原型对象链:对象继承其原型对象,而原型对象继承它的原型对象,以此类推. 我们创建的每一个函数都有一个prototype(原型)属 ...

  7. oracle BLOG图片和CLOG base64码的转换

    --BASE64转图片CREATE OR REPLACE FUNCTION DECODE_BASE64(P_CLOB_IN IN CLOB) RETURN BLOB IS V_BLOB BLOB; V ...

  8. 2019.03.09 bzoj4999: This Problem Is Too Simple!(树链剖分+线段树动态开点)

    传送门 题意:给一颗树,每个节点有个初始值,要求支持将i节点的值改为x或询问i节点到j节点的路径上有多少个值为x的节点. 思路: 考虑对每种颜色动态开点,然后用树剖+线段树维护就完了. 代码: #in ...

  9. python sort()方法

    https://www.cnblogs.com/whaben/p/6495702.html https://www.cnblogs.com/sunny3312/p/6260472.html

  10. 即时消息Toast和对话框

    public static Toast makeText(Context context, CharSequence text, int duration) protected void onDest ...