POJ 3159 Candies 【差分约束+Dijkstra】
<题目链接>
题目大意:
给n个人派糖果,给出m组数据,每组数据包含A,B,c 三个数,意思是A的糖果数比B少的个数不多于c,即B的糖果数 - A的糖果数<= c 。最后求n 比 1 最多多多少糖果。
解题分析:
这是一题典型的差分约束题。不妨将糖果数当作距离,把相差的最大糖果数看成有向边AB的权值,我们得到 dis[B]-dis[A]<=w(A,B)。看到这里,我们联想到求最短路时的松弛技术,即if(dis[B]>dis[A]+w(A,B), dis[B]=dis[A]+w(A,B)。即是满足题中的条件dis[B]-dis[A]<=w(A,B),由于要使dis[B] 最大,所以我们需要对每个点求最小值。
因为对于不同的不等式合并来说,一个数所能取得的最大值,不是看它小于等于的最大值,而是看它小于等于的最小值,即求出对该数约束最强的上界,放在本题,就是求最短路了。
//下面是普通最短路算法
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; #define INF 0x3f3f3f3f
const int N = +;
const int M =+;
int n,m;
int head[N],vis[N];
int cnt;
struct EDGE{
int to;
int next;
int w;
}edge[M];
void init(){
memset(head,-,sizeof(head));
cnt=;
}
void add(int u,int v,int w){
edge[cnt].to=v,edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
} struct NODE{
int loc;
int dis;
NODE(int a=,int b=):loc(a),dis(b){}
bool operator < (const NODE &tmp)const{
return dis>tmp.dis;
}
}d[N];
void dij(int st){
for(int i=;i<=n;i++){
vis[i]=,d[i].loc=i,d[i].dis=INF;
}
priority_queue<NODE>q;
d[st].dis=;
q.push(d[st]);
while(!q.empty()){
NODE now=q.top();
q.pop();
if(vis[now.loc])continue;
vis[now.loc]=;
for(int i=head[now.loc];i!=-;i=edge[i].next){
int v=edge[i].to;
if(d[v].dis>d[now.loc].dis+edge[i].w){
d[v].dis=d[now.loc].dis+edge[i].w;
q.push(d[v]);
}
}
}
}
int main(){
while(scanf("%d %d",&n,&m)!=EOF){
init();
for(int i=;i<=m;i++){
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
add(a,b,c);
} dij();
printf("%d\n",d[n].dis);
}
return ;
}
2018-08-31
POJ 3159 Candies 【差分约束+Dijkstra】的更多相关文章
- [poj 3159]Candies[差分约束详解][朴素的考虑法]
题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...
- POJ 3159 Candies 差分约束dij
分析:设每个人的糖果数量是a[i] 最终就是求a[n]-a[1]的最大值 然后给出m个关系 u,v,c 表示a[u]+c>=a[v] 就是a[v]-a[u]<=c 所以对于这种情况,按照u ...
- poj 3159 Candies 差分约束
Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 22177 Accepted: 5936 Descrip ...
- POJ 3159 Candies (图论,差分约束系统,最短路)
POJ 3159 Candies (图论,差分约束系统,最短路) Description During the kindergarten days, flymouse was the monitor ...
- POJ 3159 Candies 解题报告(差分约束 Dijkstra+优先队列 SPFA+栈)
原题地址:http://poj.org/problem?id=3159 题意大概是班长发糖果,班里面有不良风气,A希望B的糖果不比自己多C个.班长要满足小朋友的需求,而且要让自己的糖果比snoopy的 ...
- (简单) POJ 3159 Candies,Dijkstra+差分约束。
Description During the kindergarten days, flymouse was the monitor of his class. Occasionally the he ...
- POJ 3159 Candies(差分约束,最短路)
Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 20067 Accepted: 5293 Descrip ...
- 图论--差分约束--POJ 3159 Candies
Language:Default Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 43021 Accep ...
- POJ 3159 Candies(SPFA+栈)差分约束
题目链接:http://poj.org/problem?id=3159 题意:给出m给 x 与y的关系.当中y的糖数不能比x的多c个.即y-x <= c 最后求fly[n]最多能比so[1] ...
随机推荐
- Java对象之间的深度复制拷贝
/* * Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...
- Confluence 6 安装一个语言组件
Confluence 捆绑了一系列的语言包.这些语言包在 'Language Configuration' 界面中的语言选项中.在 Confluence 的管理员控制台,你可以选择 Choosing ...
- Confluence 6 从一个备份中获得文件附件
页面中的文件附件可以从备份中获得而不需要将备份文件导入到 Confluence 中.这个在用户删掉了附件,但是你还是想恢复这个附件的时候就变得非常有用了. 自动备份和手动备份都允许你进行这个操作,但是 ...
- 一道关于js声明变量,var和let的面试题
function aa(flag) { // var test // 变量提升,函数最顶部 if(flag) { var test = 'hello man' } else { //此处访问 test ...
- cf1025c 思维题
/* bwwwbwwbw wwbwwwbwb 不管从哪里断开翻转.翻转后的串再整体翻转一定是2s的子串 */ #include<bits/stdc++.h> using namespace ...
- bzoj 2301
一道莫比乌斯反演入门题. 首先观察题目要求:的数对数 首先可以发现,这个东西同时有上界和下界,所以并不是很容易计算 那么我们变下形,可以看到:原式= 是不是清晰很多了?(当然没有!) 不,这一步很重要 ...
- jenkins 回滚发布
#jenkins拉取文件路径 workspace=/data/wos/testtemp #备份路径 backspace=/data/wos/back #不能提Git的文件 config=/data/w ...
- Windows文件系统
微软在Dos/Windows系列操作系统中共使用了6种不同的文件系统(包括即将在windows的下一个版本中使用的Winfs).它们分别是:FAt12.FAT16.FAT32.NTFS.NTFS5.0 ...
- Google C++ 代码规范
Google C++ Style Guide Table of Contents Header Files Self-contained Headers The #define Guard For ...
- 饮冰三年-人工智能-Python-17Python基础之模块与包
一.模块(modue) 简单理解一个.py文件就称之为一个模块. 1.1 模块种类: python标准库 第三方模板 应用程序自定义模块(尽量不要与内置函数重名) 1.2 模块导入方法 # impor ...