这怎么想得到啊.........

UOJ #36

题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$


$ Solution:$

首先考虑$ k=1$的时候怎么做:如果某位上有$ 1$则有$ \frac{1}{2}$的概率可以取到这一位

$ k=1$时每一位都是独立的,可以直接做

然后考虑$ k=2$时怎么做

如果一个集合中有元素$ a,b$,则产生的贡献为$ a^2+2ab+b^2$

我们把$ a^2$和$2ab$分开讨论

如果某位有$ 1$,则有$ \frac{1}{4}$的概率取到$ a^2$

如果某两个不同的位均有$ 1$,则有$ \frac{1}{4}$的概率取到$ 2ab$

注意如果这两个不同的位只能一起被取,这个概率将被改成$ \frac{1}{2}$

然后考虑$ 3 \leq k \leq 5$时怎么做

发现产生任何一个能够被原集合的若干个数异或和表示的数都是等概率

因此我们只需要保留原集合的线性基即可

由于答案$ \lt 2^{63}$,能产生的最大的数并不大,大约为$ \sqrt[k]{2^{63}}$级别

因此能表示出的数的数量大致也是这个级别的

建出线性基之后爆搜每个数并统计答案

注意中间计算过程中可能会爆$ long \ long$可能需要手写压位或$int128$


$ my \ code(int128)$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z;unsigned ll cnt,c[],a[];
namespace subtask1{
bool b[];
void main(){
ll ans=;
for(rt i=;i<=n;i++)for(rt j=;j<=;j++)if(a[i]>>j&)b[j]=;
for(rt j=;j<=;j++)if(b[j])cnt+=(unsigned ll)<<j;
cout<<(cnt/);if(cnt%)cout<<".5";
}
}
namespace subtask2{
bool b1[][],b2[][],b[];
void main(){
__int128 ans=;
for(rt i=;i<=n;i++)
for(rt j=;j<=;j++)
for(rt k=;k<=;k++)if(j!=k){
if(a[i]>>j&){
if(a[i]>>k&)b1[j][k]=;else b2[j][k]=;
b[j]=;
}
}
for(rt i=;i<=;i++)
for(rt j=i+;j<=;j++){
__int128 all=;
if(b1[i][j])all=;
if(b1[i][j]&&(b2[i][j]||b2[j][i]))all=;
if(b2[i][j]&&b2[j][i])all=;
if(all)
ans+=all**(1ll<<i)*(1ll<<j);
}
for(rt i=;i<=;i++)if(b[i])ans+=(unsigned ll)*(1ll<<i)*(1ll<<i);
ans/=;write(ans/);
if(ans&)cout<<".5";
}
}
namespace subtask3{
__int128 ans;
__int128 mi(__int128 x,int y){
__int128 ans=;
for(rt i=;i<=y;i++)ans*=x;
return ans;
}
void dfs(int x,__int128 y){
if(x>n){
ans+=mi(y,m);
return;
}
dfs(x+,y);dfs(x+,y^a[x]);
}
void main(){
ans=;dfs(,);
for(rt i=;i<n;i++)ans/=;
write(ans/);if(ans&)cout<<".5";
}
}
int main(){
n=read();m=read();
for(rt i=;i<=n;i++){
ll x=read();
for(rt j=;j>=;j--)if(x>>j&){
if(c[j])x^=c[j];
else {
c[j]=x;
break;
}
}
}
n=;
for(rt i=;i<=;i++)if(c[i])a[++n]=c[i];
if(m==)subtask1::main();
if(m==)subtask2::main();
if(m>=)subtask3::main();
return ;
}

UOJ #36「清华集训2014」玛里苟斯的更多相关文章

  1. UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)

    UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...

  2. [UOJ]#36. 【清华集训2014】玛里苟斯

    题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...

  3. UOJ#36. 【清华集训2014】玛里苟斯 线性基

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...

  4. uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)

    传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...

  5. UOJ #276「清华集训2016」汽水

    为什么你们常数都这么小啊 UOJ #276 题意:在树上找一条链使得|边权平均值$ -k$|尽量小,$ n<=5e4$ $ Solution:$ 首先二分答案$ ans$,即我们需要找一条链使得 ...

  6. UOJ #2321. 「清华集训 2017」无限之环

    首先裂点表示四个方向 一条边上都有插头或者都不有插头,相当于满足流量平衡 最大流 = 插头个数*2时有解 然后求最小费用最大流 黑白染色分别连原点汇点

  7. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  8. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  9. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

随机推荐

  1. 利用sqlalchemy读取数据库 和pandas的Dataframe对象 互相生成

    #导入pandas import pandas as pd import numpy as np #导入SqlAlchemy from sqlalchemy import create_engine ...

  2. react-native---rn中的修饰组件(TouchableHightlight、TouchableOpacity、TouchableNativeFeedback等)

    react-native中View组件这是单纯的视图容器,并不能响应交互变化,绑定事件,rn提供了TouchableOpacity等封装组件以正确响应触摸操作. TouchableWithoutFee ...

  3. react-native中的navigator

    第一步安装相关插件 添加一些依赖 package com.awesomeproject; import com.facebook.react.ReactActivity; import com.fac ...

  4. 《Java程序设计》 第一周学习总结

    20175313 <Java程序设计>第一周学习总结 教材学习内容总结 了解Java的四个特点 学习JDK的安装以及系统环境变量的设置 掌握Java源文件命名.编译.运行 熟悉git的常用 ...

  5. appium 切换native/ webview,findby,还有页面元素定位一直小于0的问题的解决

    之前一直有个bug没有解决. 今天,终于解决了. 疑问过程: app是混合应用,项目做了H5优化之后,以前的用例执行总会失败,体现在原来的一个元素点击无反馈 排查原因:1.项目做了H5优化,2.测试的 ...

  6. Symbol特殊用途

    1. Symbol.iterator 定义对象的迭代器 一般我们遍历一个对象用for...in es6新增了一个for...of 但是对象却不能用 因为对象没有“迭代器”,那么我们给它定制一个 有了迭 ...

  7. 神经网络4_BP神经网络

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  8. Oracle基础--创建临时表空间/表空间/创建用户/授权

    总结:创建用户一般分四步: 第一步:创建临时表空间(创建用户之前要创建"临时表空间",若不创建则默认的临时表空间为temp.) SQL> CREATE TEMPORARY T ...

  9. Xshell安装及漏洞详解

    1.下载安装包 ... 2.双击安装包,进入安装第一步 3.输入客户信息 4.选择目的位置,可以通过浏览器进行修改安装路径,点击下一步按钮 5.选择程序文件夹,点击下一步按钮 6.等待安装 7.完成安 ...

  10. Dom4j完整教程

    转自:https://blog.csdn.net/chenweitang123/article/details/6255108 目录 1.DOM4J简介 2.XML文档操作1 2.1.读取XML文档: ...