Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的第Ki 个不是完全平方数的正整数倍的数。

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9,T ≤ 50

  原谅我太弱……什么题都做不出……

  这道题感觉题面好像有点问题啊……$1$不是完全平方数吗……TAT

  这道题是莫比乌斯函数的一个经典应用:容斥。对于$1$到$n$,我们要求有多少个数不是完全平方数的倍数,显然我们要把所有数的平方都给减掉。那么就就容斥一发,每次减去是 含有奇数个质因子的数 的平方的倍数个数,再把有偶数个质因子的给加回来。根据莫比乌斯函数的定义,当一个数$n$的质因子两两不同且有$p$个时,$\mu (n)=(-1)^p$,如果某个质因子出现了不止一次则$\mu (n)=0$。于是用莫比乌斯函数就可以非常方便地进行容斥了。

  最后二分答案之后判定即可。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010 using namespace std;
typedef long long llg; int a[maxn],la,mu[maxn],k,T;
bool w[maxn]; void getu(){//筛莫比乌斯函数
mu[1]=1;
for(int i=2;i<maxn;i++){
if(!w[i]) a[++la]=i,mu[i]=-1;
for(int j=1;j<=la && a[j]*i<maxn;j++){
w[a[j]*i]=1;
if(i%a[j]) mu[i*a[j]]=-mu[i];
else{ mu[a[j]*i]=0; break;}
}
}
} int suan(int x){
int ans=0;
for(int i=1;i*i<=x;i++)
ans+=mu[i]*(x/(i*i));
return ans;
} int main(){
File("a");
scanf("%d",&T);
getu();
while(T--){
scanf("%d",&k);
int l=1,r=2147483647,mid;
while(l!=r){
mid=(int)(((llg)l+(llg)r)>>1);
if(suan(mid)>=k) r=mid;
else l=mid+1;
}
printf("%d\n",l);
}
return 0;
}

  这道题还是一道双倍经验题,同 vijos1889(稍微有点变化)。

BZOJ 2440 【中山市选2011】 完全平方数的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  8. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  10. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. iOS中UINavigationController控制器使用详解

    一.概述 UINavigationController用来管理视图控制器,在多视图控制器中常用.它以栈的形式管理视图控制器,管理视图控制器个数理论上不受限制(实际受内存限制),push和pop方法来弹 ...

  2. [读书笔记] CSS权威指南2: 结构和层叠

    层叠样式表中最基本的一个方面可能就是层叠——冲突的声明要通过这个层叠过程排序,并由此确定最终的文档表示.这个过程的核心是选择器及其相关声明的特殊性,以及继承机制. 特殊性 对于每个规则,用户代理会计算 ...

  3. Android中应用程序清除data/data,清除cache,超详细

    清除data,清除cache,其实在Android原生Setting里面有这个功能的. 需求是把这个功能做到自己的App里面,并计算出cache和data的size. 所以参考了一下Setting的源 ...

  4. aspx页面前端使用js 调用aspx.cs后台的方法,不回传

    本次使用 Ajax.dll,AjaxPro.dll 两个类库 1.首先添加引用:Ajax.dll,AjaxPro.dll 文件在 Libiary 目录下 2.配置 WebConfig 属性 将 下面2 ...

  5. ORA-00030: User session ID does not exist.

    同事在Toad里面执行SQL语句时,突然无线网络中断了,让我检查一下具体情况,如下所示(有些信息,用xxx替换,因为是在处理那些历史归档数据,使用的一个特殊用户,所以可以用下面SQL找到对应的会话信息 ...

  6. MongoDB学习笔记——Replica Set副本集

    副本集 可以将MongoDB中的副本集看作一组服务器集群由一个主节点和多个副本节点等组成,相对于之前讲到的主从复制提供了故障自动转移的功能 副本集实现数据同步的方式依赖于local数据库中的oplog ...

  7. memcache使用方法测试 # 转自 简单--生活 #

    <?php   //php操作memcache的使用测试总结--学习   //1 Memcache::connect;    //$memcache = new Memcache;    //$ ...

  8. ELK日志解决方案安装配置与使用

    官方网站:https://www.elastic.co/products/elasticsearch logstash,elasticsearch,kibana作用如下: logstash:分布在每一 ...

  9. 常用的JavaScript模式

    模式是解决或者避免一些问题的方案. 在JavaScript中,会用到一些常用的编码模式.下面就列出了一些常用的JavaScript编码模式,有的模式是为了解决特定的问题,有的则是帮助我们避免一些Jav ...

  10. ExtJs4 笔记(14) layout 布局

    作者:李盼(Lipan)出处:[Lipan] (http://www.cnblogs.com/lipan/)版权声明:本文的版权归作者与博客园共有.转载时须注明本文的详细链接,否则作者将保留追究其法律 ...