原文出处:http://blog.sina.com.cn/s/blog_4572df4e01019wsj.html

伽罗华域即有限域,RS编码在此域中进行运算,故不得不对其有所了解。DataMatrix的数据码字、及纠正码字等均是属于GF(2^8)中的符号,其空间大小为256。有限域的一个特征是,其符号(元素)运算的结果,仍属于该域。除了0、1外,另外254个符号,均由本原多项式P(x)生成,DataMatrix规则中,P(x)=x^8+x^5+x^3+x^2+1,设α为P(x)的根,α^8+α^5+α^3+α^2+1=0,由于伽罗华域的加法为异或算法,故α^8=α^5+α^3+α^2+1。
  GF(2^8)符号的表示形式如下:


计算机运算时,需要用相关算法将整个GF的所有符号的数值表示列表出来,结果如下:
alphaTo=
{ 1, 2, 4, 8, 16, 32, 64, 128, 45, 90, 180, 69, 138, 57, 114, 228,
229, 231, 227, 235, 251, 219, 155, 27, 54, 108, 216, 157, 23, 46, 92, 184,
93, 186, 89, 178, 73, 146, 9, 18, 36, 72, 144, 13, 26, 52, 104, 208,
141, 55, 110, 220, 149, 7, 14, 28, 56, 112, 224, 237, 247, 195, 171, 123,
246, 193, 175, 115, 230, 225, 239, 243, 203, 187, 91, 182, 65, 130, 41, 82,
164, 101, 202, 185, 95, 190, 81, 162, 105, 210, 137, 63, 126, 252, 213, 135,
35, 70, 140, 53, 106, 212, 133, 39, 78, 156, 21, 42, 84, 168, 125, 250,
217, 159, 19, 38, 76, 152, 29, 58, 116, 232, 253, 215, 131, 43, 86, 172,
117, 234, 249, 223, 147, 11, 22, 44, 88, 176, 77, 154, 25, 50, 100, 200,
189, 87, 174, 113, 226, 233, 255, 211, 139, 59, 118, 236, 245, 199, 163, 107,
214, 129, 47, 94, 188, 85, 170, 121, 242, 201, 191, 83, 166, 97, 194, 169,
127, 254, 209, 143, 51, 102, 204, 181, 71, 142, 49, 98, 196, 165, 103, 206,
177, 79, 158, 17, 34, 68, 136, 61, 122, 244, 197, 167, 99, 198, 161, 111,
222, 145, 15, 30, 60, 120, 240, 205, 183, 67, 134, 33, 66, 132, 37, 74,
148, 5, 10, 20, 40, 80, 160, 109, 218, 153, 31, 62, 124, 248, 221, 151,
3, 6, 12, 24, 48, 96, 192, 173, 119, 238, 241, 207, 179, 75, 150, 0 }
同时,将各符号的指数也列表出来:
expOf=
{ 255, 0, 1, 240, 2, 225, 241, 53, 3, 38, 226, 133, 242, 43, 54, 210,
4, 195, 39, 114, 227, 106, 134, 28, 243, 140, 44, 23, 55, 118, 211, 234,
5, 219, 196, 96, 40, 222, 115, 103, 228, 78, 107, 125, 135, 8, 29, 162,
244, 186, 141, 180, 45, 99, 24, 49, 56, 13, 119, 153, 212, 199, 235, 91,
6, 76, 220, 217, 197, 11, 97, 184, 41, 36, 223, 253, 116, 138, 104, 193,
229, 86, 79, 171, 108, 165, 126, 145, 136, 34, 9, 74, 30, 32, 163, 84,
245, 173, 187, 204, 142, 81, 181, 190, 46, 88, 100, 159, 25, 231, 50, 207,
57, 147, 14, 67, 120, 128, 154, 248, 213, 167, 200, 63, 236, 110, 92, 176,
7, 161, 77, 124, 221, 102, 218, 95, 198, 90, 12, 152, 98, 48, 185, 179,
42, 209, 37, 132, 224, 52, 254, 239, 117, 233, 139, 22, 105, 27, 194, 113,
230, 206, 87, 158, 80, 189, 172, 203, 109, 175, 166, 62, 127, 247, 146, 66,
137, 192, 35, 252, 10, 183, 75, 216, 31, 83, 33, 73, 164, 144, 85, 170,
246, 65, 174, 61, 188, 202, 205, 157, 143, 169, 82, 72, 182, 215, 191, 251,
47, 178, 89, 151, 101, 94, 160, 123, 26, 112, 232, 21, 51, 238, 208, 131,
58, 69, 148, 18, 15, 16, 68, 17, 121, 149, 129, 19, 155, 59, 249, 70,
214, 250, 168, 71, 201, 156, 64, 60, 237, 130, 111, 20, 93, 122, 177, 150 }
符号的运算:
a+b:=a^b,例如66+67=66^67=1
a*b:1、两指数相加,2、Mod(255),3、求新指数对应的符号,例如66*67,指数分别为expOf(66)=220、expOf(67)=217,新指数为182,对应符号alphaTo(182)=204,即66*67=204。

GF(2^8)空间的生成算法如下:

int MM = 8;
int NN = 255;
int alphaToMM = 45;//α^8=α^5+α^3+α^2+1
int* alphaTo = new int[NN+1];
int* expOf = new int[NN+1];

alphaTo[MM] = alphaToMM;
expOf[alphaToMM] = MM;
alphaTo[NN] = 0;
expOf[0] = NN;

int i, shift;
shift = 1;
for(i=0; i<MM; i++){
alphaTo[i] = shift;//2^i
expOf[alphaTo[i]] = i;
shift <<= 1;
}
shift = 128;
for(i=MM+1; i<NN; i++){
if(alphaTo[i-1] >= shift){
alphaTo[i] = alphaTo[MM] ^ ((alphaTo[i-1]^shift)<<1);//alphaTo[i-1]*alpha+alpha^8
}else{
alphaTo[i] = alphaTo[i-1]<<1;
}
expOf[alphaTo[i]] = i;
}

(转)DataMatrix编码2——伽罗华域运算的更多相关文章

  1. jerasure 2.0译文

    原文地址: 本文译者水平有限,如发现问题请批评指正 Jerasure 2.0:为方便存储相关应用开发的一个基于C开发的纠删码库 版本2.0 James S.Plank Kevin M.Greenan ...

  2. 关于rs编码的理解

    1,rs编码首先是线性循环编码,所谓线性循环编码就是说编码后的码组T(x)左移或右移都必然还是有限组码组中的一组,并且T(X)码组能够被g(x)整除,g(x)为生成多项式. 2,由信息码m(x)得到T ...

  3. 随机线性网络编码的C语言实现,实现可靠传输:原理(1)

    线性方程组,大家都不陌生吧.来一组 A11 *X1 + A12 *X2 + A13 *X3 + A14 *X4 =Q1 A21 *X1 + A22 *X2 + A23 *X3 + A24 *X4 =Q ...

  4. 随机线性网络编码的C语言实现,实现可靠传输:实现篇(2)

    伽罗华域(2^8)乘除法的编程实现

  5. Javascript生成二维码(QR)

    网络上已经有非常多的二维码编码和解码工具和代码,很多都是服务器端的,也就是说需要一台服务器才能提供二维码的生成.本着对服务器性能的考虑,这种小事情都让服务器去做,感觉对不住服务器,尤其是对于大流量的网 ...

  6. Reed-Solomon码,QR

    原文: Reed–Solomon codes for coders参考: AN2407.pdfWIKI: 里德-所罗门码实现:Pypi ReedSolo #译注:最近看到了RS码,发现还挺有意思的,找 ...

  7. Coding the Matrix (0):映射、复数和域

    1. 非常好的 Python 教程 <深入 Python 3.0> 以及 IBM 开发社区的博客探索 Python. 2. 子集: s 是 S 的子集 >>>S = {2 ...

  8. RS(纠删码)技术浅析及Python实现

    前言 在Ceph和RAID存储领域,RS纠删码扮演着重要的角色,纠删码是经典的时间换空间的案例,通过更多的CPU计算,降低低频存储数据的存储空间占用. 纠删码原理 纠删码基于范德蒙德矩阵实现,核心公式 ...

  9. 图像处理之二维码生成-qr

    Javascript生成二维码(QR)   网络上已经有非常多的二维码编码和解码工具和代码,很多都是服务器端的,也就是说需要一台服务器才能提供二维码的生成.本着对服务器性能的考虑,这种小事情都让服务器 ...

随机推荐

  1. 开发笔记之NSTable 排序

    (1)第一步设置一下button IBOutlet NSButton * nameOrderBT; IBOutlet NSButton * sizeOrderBT; (2)切换设置切换相遇函数 -(I ...

  2. composer快速入门

    composer.json 文件内容定义 ====================================================={ "require":{ &q ...

  3. Asp.net中实现同一用户名不能同时登录(单点登录)

    Web 项目中经常遇到的问题就是同一用户名多次登录的问题,相应的解决办法也很多,总结起来不外乎这几种解决办法: 将登录后的用户名放到数据库表中: 登录后的用户名放到Session中: 登录后的用户名放 ...

  4. NuGet学习笔记3——搭建属于自己的NuGet服务器

    文章导读 创建NuGetServer Web站点 发布站点到IIS 添加本地站点到包包数据源 在上一篇NuGet学习笔记(2) 使用图形化界面打包自己的类库 中讲解了如何打包自己的类库,接下来进行最重 ...

  5. SQL Server 2012实施与管理实战指南(笔记)——Ch6连接的建立和问题排查

    6.连接的建立和问题排查 会话的建立分成2个部分: 1.连接,即找到这个实例 2.认证,告诉sql server谁要连接 目录 6.连接的建立和问题排查 6.1协议选择和别名 6.1.1 服务器网络配 ...

  6. php中文乱码问题

    HTML中文乱码问题的解决方法. 比如有个index.html的页面(这里是指真正的静态页面,修改服务器的……伪静态的请看方案B) 1.在head标签里面加入这句 <head> <m ...

  7. spring 整合 ActiveMQ

    1.1     JMS简介 JMS的全称是Java Message Service,即Java消息服务.它主要用于在生产者和消费者之间进行消息传递,生产者负责产生消息,而消费者负责接收消息.把它应用到 ...

  8. Apache虚拟主机配置

    在一个Apache服务器上可以配置多个虚拟主机,实现一个服务器提供多站点服务,其实就是访问同一个服务器上的不同目录.Apache虚拟主机配置有3中方法:基于IP配置.基于域名配置和基于端口配置,这里介 ...

  9. linux进程间通信-信号量(semaphore)

    一 为什么要使用信号量 为了防止出现因多个程序同时访问一个共享资源而引发的一系列问题,我们需要一种方法,它可以通过生成并使用令牌来授权,在任一时刻只能有一个执行线程访问 代码的临界区域.临界区域是指执 ...

  10. php 批量更新某字段内容的部分内容 replace(要替换的字段,'被替换的字符串,'替换成的字符串')

    要求: 一个字段值: ------预约---- 要将其中 "预约",改成"预定". 但是我开始写的时候,写成了 update 表名 set smscontent ...