(转)DataMatrix编码2——伽罗华域运算
原文出处:http://blog.sina.com.cn/s/blog_4572df4e01019wsj.html
伽罗华域即有限域,RS编码在此域中进行运算,故不得不对其有所了解。DataMatrix的数据码字、及纠正码字等均是属于GF(2^8)中的符号,其空间大小为256。有限域的一个特征是,其符号(元素)运算的结果,仍属于该域。除了0、1外,另外254个符号,均由本原多项式P(x)生成,DataMatrix规则中,P(x)=x^8+x^5+x^3+x^2+1,设α为P(x)的根,α^8+α^5+α^3+α^2+1=0,由于伽罗华域的加法为异或算法,故α^8=α^5+α^3+α^2+1。
GF(2^8)符号的表示形式如下:

计算机运算时,需要用相关算法将整个GF的所有符号的数值表示列表出来,结果如下:
alphaTo=
{ 1, 2, 4, 8, 16, 32, 64, 128, 45, 90, 180, 69, 138, 57, 114, 228,
229, 231, 227, 235, 251, 219, 155, 27, 54, 108, 216, 157, 23, 46, 92, 184,
93, 186, 89, 178, 73, 146, 9, 18, 36, 72, 144, 13, 26, 52, 104, 208,
141, 55, 110, 220, 149, 7, 14, 28, 56, 112, 224, 237, 247, 195, 171, 123,
246, 193, 175, 115, 230, 225, 239, 243, 203, 187, 91, 182, 65, 130, 41, 82,
164, 101, 202, 185, 95, 190, 81, 162, 105, 210, 137, 63, 126, 252, 213, 135,
35, 70, 140, 53, 106, 212, 133, 39, 78, 156, 21, 42, 84, 168, 125, 250,
217, 159, 19, 38, 76, 152, 29, 58, 116, 232, 253, 215, 131, 43, 86, 172,
117, 234, 249, 223, 147, 11, 22, 44, 88, 176, 77, 154, 25, 50, 100, 200,
189, 87, 174, 113, 226, 233, 255, 211, 139, 59, 118, 236, 245, 199, 163, 107,
214, 129, 47, 94, 188, 85, 170, 121, 242, 201, 191, 83, 166, 97, 194, 169,
127, 254, 209, 143, 51, 102, 204, 181, 71, 142, 49, 98, 196, 165, 103, 206,
177, 79, 158, 17, 34, 68, 136, 61, 122, 244, 197, 167, 99, 198, 161, 111,
222, 145, 15, 30, 60, 120, 240, 205, 183, 67, 134, 33, 66, 132, 37, 74,
148, 5, 10, 20, 40, 80, 160, 109, 218, 153, 31, 62, 124, 248, 221, 151,
3, 6, 12, 24, 48, 96, 192, 173, 119, 238, 241, 207, 179, 75, 150, 0 }
同时,将各符号的指数也列表出来:
expOf=
{ 255, 0, 1, 240, 2, 225, 241, 53, 3, 38, 226, 133, 242, 43, 54, 210,
4, 195, 39, 114, 227, 106, 134, 28, 243, 140, 44, 23, 55, 118, 211, 234,
5, 219, 196, 96, 40, 222, 115, 103, 228, 78, 107, 125, 135, 8, 29, 162,
244, 186, 141, 180, 45, 99, 24, 49, 56, 13, 119, 153, 212, 199, 235, 91,
6, 76, 220, 217, 197, 11, 97, 184, 41, 36, 223, 253, 116, 138, 104, 193,
229, 86, 79, 171, 108, 165, 126, 145, 136, 34, 9, 74, 30, 32, 163, 84,
245, 173, 187, 204, 142, 81, 181, 190, 46, 88, 100, 159, 25, 231, 50, 207,
57, 147, 14, 67, 120, 128, 154, 248, 213, 167, 200, 63, 236, 110, 92, 176,
7, 161, 77, 124, 221, 102, 218, 95, 198, 90, 12, 152, 98, 48, 185, 179,
42, 209, 37, 132, 224, 52, 254, 239, 117, 233, 139, 22, 105, 27, 194, 113,
230, 206, 87, 158, 80, 189, 172, 203, 109, 175, 166, 62, 127, 247, 146, 66,
137, 192, 35, 252, 10, 183, 75, 216, 31, 83, 33, 73, 164, 144, 85, 170,
246, 65, 174, 61, 188, 202, 205, 157, 143, 169, 82, 72, 182, 215, 191, 251,
47, 178, 89, 151, 101, 94, 160, 123, 26, 112, 232, 21, 51, 238, 208, 131,
58, 69, 148, 18, 15, 16, 68, 17, 121, 149, 129, 19, 155, 59, 249, 70,
214, 250, 168, 71, 201, 156, 64, 60, 237, 130, 111, 20, 93, 122, 177, 150 }
符号的运算:
a+b:=a^b,例如66+67=66^67=1
a*b:1、两指数相加,2、Mod(255),3、求新指数对应的符号,例如66*67,指数分别为expOf(66)=220、expOf(67)=217,新指数为182,对应符号alphaTo(182)=204,即66*67=204。
GF(2^8)空间的生成算法如下:
int MM = 8;
int NN = 255;
int alphaToMM = 45;//α^8=α^5+α^3+α^2+1
int* alphaTo = new int[NN+1];
int* expOf = new int[NN+1];
alphaTo[MM] = alphaToMM;
expOf[alphaToMM] = MM;
alphaTo[NN] = 0;
expOf[0] = NN;
int i, shift;
shift = 1;
for(i=0; i<MM; i++){
alphaTo[i] = shift;//2^i
expOf[alphaTo[i]] = i;
shift <<= 1;
}
shift = 128;
for(i=MM+1; i<NN; i++){
if(alphaTo[i-1] >= shift){
alphaTo[i] = alphaTo[MM] ^ ((alphaTo[i-1]^shift)<<1);//alphaTo[i-1]*alpha+alpha^8
}else{
alphaTo[i] = alphaTo[i-1]<<1;
}
expOf[alphaTo[i]] = i;
}
(转)DataMatrix编码2——伽罗华域运算的更多相关文章
- jerasure 2.0译文
原文地址: 本文译者水平有限,如发现问题请批评指正 Jerasure 2.0:为方便存储相关应用开发的一个基于C开发的纠删码库 版本2.0 James S.Plank Kevin M.Greenan ...
- 关于rs编码的理解
1,rs编码首先是线性循环编码,所谓线性循环编码就是说编码后的码组T(x)左移或右移都必然还是有限组码组中的一组,并且T(X)码组能够被g(x)整除,g(x)为生成多项式. 2,由信息码m(x)得到T ...
- 随机线性网络编码的C语言实现,实现可靠传输:原理(1)
线性方程组,大家都不陌生吧.来一组 A11 *X1 + A12 *X2 + A13 *X3 + A14 *X4 =Q1 A21 *X1 + A22 *X2 + A23 *X3 + A24 *X4 =Q ...
- 随机线性网络编码的C语言实现,实现可靠传输:实现篇(2)
伽罗华域(2^8)乘除法的编程实现
- Javascript生成二维码(QR)
网络上已经有非常多的二维码编码和解码工具和代码,很多都是服务器端的,也就是说需要一台服务器才能提供二维码的生成.本着对服务器性能的考虑,这种小事情都让服务器去做,感觉对不住服务器,尤其是对于大流量的网 ...
- Reed-Solomon码,QR
原文: Reed–Solomon codes for coders参考: AN2407.pdfWIKI: 里德-所罗门码实现:Pypi ReedSolo #译注:最近看到了RS码,发现还挺有意思的,找 ...
- Coding the Matrix (0):映射、复数和域
1. 非常好的 Python 教程 <深入 Python 3.0> 以及 IBM 开发社区的博客探索 Python. 2. 子集: s 是 S 的子集 >>>S = {2 ...
- RS(纠删码)技术浅析及Python实现
前言 在Ceph和RAID存储领域,RS纠删码扮演着重要的角色,纠删码是经典的时间换空间的案例,通过更多的CPU计算,降低低频存储数据的存储空间占用. 纠删码原理 纠删码基于范德蒙德矩阵实现,核心公式 ...
- 图像处理之二维码生成-qr
Javascript生成二维码(QR) 网络上已经有非常多的二维码编码和解码工具和代码,很多都是服务器端的,也就是说需要一台服务器才能提供二维码的生成.本着对服务器性能的考虑,这种小事情都让服务器 ...
随机推荐
- Swift开发第十二篇——protocol组合&static和class
本篇分为两部分: 一.Swift 中 protocol 组合的使用 二.Swfit 中 static和class 的使用 一.Swift 中 protocol 组合的使用 在 Swift 中我们可以使 ...
- 设计模式 之 策略(Strategy)模式
最近看了<head first 设计模式>一书,便总结了里面的一些内容,今天就简单介绍一下策略模式. 策略模式:定义了算法族,分别封装起来,让他们能够相互替换,此模式让算法的变化独立于使用 ...
- 转:JS获取浏览器高度和宽度
发现一篇好文章,汇总到自己的网站上. IE中: document.body.clientWidth ==> BODY对象宽度 document.body.clientHeight ==> ...
- VBA 操作数字
第8章 操作数字 加.减.乘.除.平方与指数(^2 或者^n).平方根Sqr.正弦Sin.余弦Cos.正切Tan.反正切Atn.绝对值Abs 转换为整型数.长整型数.双精度型数和值 Cint当双精度型 ...
- 转载文章----.NET 框架浅析
转载地址:http://www.cnblogs.com/yangmingming/archive/2010/01/27/1657850.html .NET 框架概要: .NET框架,即.NET Fra ...
- 自定义日志阅读器——包括了一个load取Tomcat日志的分析器
最近在写往公司产品里添加Tomcat适配器,以支持Tomcat.有一些功能需要摘取到Tomcat的部分日志.没有合适的工具,也不想去网上找了,就自己写了一个. 简单的画了一下设计方案: 下面直接上代码 ...
- Java Se :线性表
Java的集合框架分为两个系列,Collection和Map系列.在大学期间,学习数据结构时,好像学习了线性表.非线性表.树,哎,都给忘了.其实,在Collection系列内部又可以分为线性表.集合两 ...
- 转载 sql 存储过程与函数区别
SQL Server用户自定义函数和存储过程有类似的功能,都可以创建捆绑SQL语句,存储在server中供以后使用.这样能够极大地提高工作效率,通过以下的各种做法可以减少编程所需的时间: 重复使用编程 ...
- mybatis 中#{}与${}的区别
1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sql时的值为order by "111&qu ...
- .NET项目开发—浅谈面向接口编程、可测试性、单元测试、迭代重构(项目小结)
阅读目录: 1.开篇介绍 2.迭代测试.重构(强制性面向接口编程,要求代码具有可测试性) 2.1.面向接口编程的两个设计误区 2.1.1.接口的依赖倒置 2.1.2.接口对实体的抽象 2.2.迭代单元 ...