【bzoj2118】 墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 (题目链接)
题意
给出${B}$的取值范围${[Bmin,Bmax]}$,求方程${a_{1}*x_{1}+a_{2}*b_{2}+~~+a_{n}*b_{n}=B}$有多少${B}$可以使等式存在非负整数解。
Solution
问题很容易就被转化为:用${a_{1},a_{2},a_{3},······a_{n}}$能组成多少个在范围${[Bmin,Bmax]}$内的数。这是一类经典的图论问题。
我们假设${a}$中最小的元素为${T}$,可以考虑用${n}$个数能够组成的数对${T}$的模的情况。用${dis[i]}$表示构成的一个数${Q}$,且${Q mod T=i}$,${Q}$是满足上述两个条件的最小值。我们在这里将题目中的区间改为具体的询问,更好的进行讨论,对于询问${X}$,设${X mod T=i}$,则有以下三种情况:
- ${dis[i]>x}$。由于用这${n}$个数构成的一个模${T}$为${i}$的数,这个数的最小值为${dis[i]}$,而${dis[i]>x}$,说明${X}$是无法构成的。
- ${dis[i]=x}$。由于用这${n}$个数构成的一个模${T}$为${i}$的数,这个数的最小值为${dis[i]}$,而${dis[i]=x}$,说明${X}$可以构成,且是能构成的模${T}$等于${i}$的最小的数。
- ${dis[i]<x}$。由于用这${n}$个数构成的一个比${X}$更小的${~mod~T}$为${i}$的数${Q}$,则${X~mod~T=Q~mod~T}$,且${X}$必定可以由${Q}$加上若干个${T}$得到,因此,${X}$也是可以构成的。
由上述三点可知,当${dis[i]<=X}$时,${X}$是可以被构成的,否则则不能。
现在的问题是如何求解${dis}$数组?
相信各位看官已经发现${dis}$数组的命名有点诡异,没错就是用最短路求解。由于${dis[i]~mod~T=i}$,${i}$的范围在${0~T-1}$内,因此可以建立${T}$个点${0,1,2,······,T-1}$。对于点${i}$和任意一个数${a[j]}$,设${k=(i+a[j])~mod~T}$,可以认为从${i}$到${k}$连条边权为${a[j]}$的边,表示可以从${~mod~T=i}$这个点,通过加上边权${a[j]}$,到达${~mod~T=k}$的点。由于${T~mod~T=0}$,即可设${T}$为数字编号为0的点。要求${X}$是否能由${n}$个数构成,就要求出${dis[X~mod~T]}$的最小值了;当${X}$大于等于${dis[X~mod~T]}$,它就能够由着${n}$个数构成,设${X~mod~T=j}$,${dis[j]}$即为${j}$这个点到达${0}$点的最短距离,它可以由0点直接加边权${a[j]}$得到,也可以经过其他中间点到达。转换后,它就是个最短路问题了。
再回到这个问题上。于是我们先建图,跑一遍最短路,预处理出${dis}$数组,然后枚举${i=0}$~${T-1}$,计算模${T}$为${i}$的数在区间${[Bmin,Bmax]}$中有多少个,统计答案即可。
细节
堆里面又忘记开long long了,尴尬。
代码
// bzoj2118
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define MOD 10007
#define inf (1ll<<60)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500010;
struct edge {int to,next,w;}e[maxn*10];
struct data {
LL num,w;
friend bool operator < (const data a,const data b) {
return a.w>b.w;
}
};
int head[maxn],a[maxn],vis[maxn];
int n,cnt;
LL L,dis[maxn],R; void link(int u,int v,int w) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;e[cnt].w=w;
}
void Dijkstra() {
priority_queue<data> q;
for (int i=0;i<a[1];i++) dis[i]=inf;
data x=(data){0,0},y;
dis[0]=0;
q.push(x);
while (!q.empty()) {
x=q.top();q.pop();
if (vis[x.num]) continue;
vis[x.num]=1;
for (int i=head[x.num];i;i=e[i].next)
if (dis[e[i].to]>x.w+e[i].w) {
y.w=dis[e[i].to]=x.w+e[i].w;
y.num=e[i].to;
q.push(y);
}
}
}
int main() {
scanf("%d%lld%lld",&n,&L,&R);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+1+n);
if (!a[n]) return printf("0"),0;
for (int i=0;i<a[1];i++)
for (int j=2;j<=n;j++) link(i,(a[j]+i)%a[1],a[j]);
Dijkstra();
LL ans=0;
for (int i=0;i<a[1];i++) if (dis[i]<=R) {
LL l=max(0ll,(L-dis[i])/a[1]);
if (l*a[1]+dis[i]<L) l++;
LL r=(R-dis[i])/a[1];
if (r*a[1]+dis[i]>R) r--;
ans+=r-l+1;
}
printf("%lld\n",ans);
return 0;
}
【bzoj2118】 墨墨的等式的更多相关文章
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2944 Solved: 1206[Submit][Status][Discu ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- p2371&bzoj2118 墨墨的等式
传送门(bzoj) 题目 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存 ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- BZOJ2118: 墨墨的等式(最短路构造/同余最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
随机推荐
- AR 不同 继承映射的问题总结
在使用AR(Nhibernate) 做ORM时,使用类的继承体系时,它有不同的映射方式,解决的问题不同,带来的问题差异也很大. 1.所有数据 存储在一张表,不同的类使用 DiscriminatorCo ...
- hadoop 2.6伪分布安装
hadoop 2.6的“伪”分式安装与“全”分式安装相比,大部分操作是相同的,主要区别在于不用配置slaves文件,而且其它xxx-core.xml里的参数很多也可以省略,下面是几个关键的配置: (安 ...
- java 利用JAX-RS快速开发RESTful 服务
JAX-RS(Java API for RESTful Web Services)同样也是JSR的一部分,详细规范定义见 https://jcp.org/en/jsr/detail?id=311 .从 ...
- JAVA反射其实就是那么一回事
概念:什么是反射 java反射机制: JAVA反射机制是在运行状态中, 对于任意一个类,都能够知道这个类的所有属性和方法: 对于任意一个对象,都能够调用它的任意一个方法和属性: 这种动态获取的信息以及 ...
- jQuery学习笔记(四):attr()与prop()的区别
这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...
- [转]linux 系统监控、诊断工具之 IO wait
1.问题: 最近在做日志的实时同步,上线之前是做过单份线上日志压力测试的,消息队列和客户端.本机都没问题,但是没想到上了第二份日志之后,问题来了: 集群中的某台机器 top 看到负载巨高,集群中的机器 ...
- Tensorflow学习笔记4:分布式Tensorflow
简介 Tensorflow API提供了Cluster.Server以及Supervisor来支持模型的分布式训练. 关于Tensorflow的分布式训练介绍可以参考Distributed Tenso ...
- 半平面交模板(BZOJ1007)
#include<cstdio> #include<algorithm> #define LDB long double using namespace std; ]; str ...
- 数据库MongoDB查询语句--持续更新
模糊查询: 包含字符串str : find({'name':/str/i}); {'name':/str/} 以str开头: {'name':/^str/} $in查询: 字段:{ field: ...
- Vware Workstation pro 12|虚拟机
Vmware是比较不错的PC虚拟化软件,vmware11+不在支持32的系统安装!体积比之前小了很多 VMware 12 官方中文页面 http://vmware.com/cn/products/wo ...