[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

(1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为

\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big),\]

其中 \(\hat{x}_i\) 表示 \(x_i\) 不在其中.

(2)  当 \(a\neq 0\) 时,我们有

\[|A|=\frac{1}{a}\begin{vmatrix} a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}\]

\[=\frac{1}{a}\begin{vmatrix} x_1-(x_1-a) & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-(x_2-a) & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-(x_n-a) & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]

按第一列拆分成两个行列式之差,有

\[|A|=\frac{1}{a}\begin{vmatrix} x_1 & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2 & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}-\frac{1}{a}\begin{vmatrix} x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]

对于上面第一个行列式,将第一列乘以 \(a\) 加到第二列上;然后将第二列乘以 \(a\) 加到第三列上;\(\cdots\);然后将第 \(n-1\) 列乘以 \(a\) 加到第 \(n\) 列上;最后将第 \(i\) 行提出公因子 \(x_i\),可化为 Vander Monde 行列式. 对于上面第二个行列式,将第 \(i\) 行提出公因子 \(x_i-a\),可化为 Vander Monde 行列式. 因此,我们有

\[|A|=\frac{1}{a}x_1\cdots x_n\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]

\[-\frac{1}{a}(x_1-a)\cdots(x_n-a)\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]

\[=\frac{1}{a}\Big(x_1\cdots x_n-(x_1-a)\cdots(x_n-a)\Big)\prod_{1\leq i<j\leq n}(x_j-x_i). \quad\Box\]

  \(a\neq 0\) 时的结果,虽然表面上 \(a\) 出现在分母中 (只是为了看上去简洁),但它其实是一个关于 \(a\) 的多项式 (展开后即知),此时若令 \(a=0\),马上可以得到 \(a=0\) 时的结果. 这说明 \(a\neq 0\) 时的结果和 \(a=0\) 时的结果可以统一起来. 为什么会发生这种情况呢?感兴趣的同学可以参考如下教学论文《文字行列式求值中的两个技巧》。

[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)的更多相关文章

  1. [问题2014A01] 解答三(升阶法,由董麒麟同学提供)

    [问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...

  2. [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

    [问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...

  3. [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)

    [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...

  4. [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

    [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...

  5. ACM题目————列变位法解密

    这是在百度之星看到的. Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐 ...

  6. [JAVA] 冻结Excel的第一行或第一列

    可以按照如下设置创建冻结窗口. sheet.createFreezePane( 3, 2, 3, 2 ); 前两个参数是你要用来拆分的列数和行数.后两个参数是下面窗口的可见象限,其中第三个参数是右边区 ...

  7. ACM学习历程—BestCoder 2015百度之星资格赛1002 列变位法解密(vector容器)

    Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置 ...

  8. awk删除文件第一列

    awk删除文件第一列 1.采用awk awk '{$1="";print $0}' file 2.采用sed sed -e 's/[^]* //' file sort -R fil ...

  9. [问题2014A02] 解答三(降阶公式法)

    [问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...

随机推荐

  1. Next

    https://code.google.com/p/ik-analyzer/downloads/list  IK Analyzer

  2. 关于svn的使用

    svn听课笔记 1. 下载并安装svn2. 将svn安装目录中bin目录添加到用户path变量中.3. 创建svn根目录svnroot4. 启动svn服务 在dos启动命令: svnserve -d ...

  3. c#根据后台数据,自动生成checkbox

    前端在aspx中,添加生成checkbox的容器div: <div id="container" runat="server"></div&g ...

  4. LoadRunner11.00入门教程出现的问题

    问题1.打不开浏览器 解决办法:打开浏览器工具--Internet 选项--高级--取消启用第三方浏览器扩展. 顺带解决了,有两个浏览器问题. 两个浏览器:一个是自带的IE,一个是其他软件插件. 解决 ...

  5. 程序中的@Override是什么意思

    @Override是Java5的元数据,自动加上去的一个标志,告诉你说下面这个方法是从父类/接口 继承过来的,需要你重写一次,这样就可以方便你阅读,也不怕会忘记 @Override是伪代码,表示重写( ...

  6. DevExpress GridView对表格的部分说明

    1. int[] selects = this.m_grdView1.GetSelectedRows(); // 获取选中的行,可能是几行 2. this.m_grdView1.GetRowCellV ...

  7. C# Lock 解读[转]

    一.Lock定义     lock 关键字可以用来确保代码块完成运行,而不会被其他线程中断.它可以把一段代码定义为互斥段(critical section),互斥段在一个时刻内只允许一个线程进入执行, ...

  8. iOS 两个App之间调起通信

    前言 假设需求是这样的:由一个app1跳转到app2之后,app2完成某项任务之后,怎么把app2的完成信息传到app1(自己的程序是app1),传的是什么类型的数据,怎么进行解析? 逻辑 本文章使用 ...

  9. JAVASE02-Unit02: 正则表达式 、 Object 、 包装类

    正则表达式 . Object . 包装类 字符串支持正则表达式的方法一: package day02; /** * 字符串支持正则表达式的方法一: * boolean matches(String r ...

  10. Python开发【第二章】:Python深浅拷贝剖析

    Python深浅拷贝剖析 Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果. 下面本文就通过简单的例子介绍一下这些概念之间的差别. 一.对象赋值 ...