[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
(1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为
\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big),\]
其中 \(\hat{x}_i\) 表示 \(x_i\) 不在其中.
(2) 当 \(a\neq 0\) 时,我们有
\[|A|=\frac{1}{a}\begin{vmatrix} a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}\]
\[=\frac{1}{a}\begin{vmatrix} x_1-(x_1-a) & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-(x_2-a) & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-(x_n-a) & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]
按第一列拆分成两个行列式之差,有
\[|A|=\frac{1}{a}\begin{vmatrix} x_1 & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2 & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}-\frac{1}{a}\begin{vmatrix} x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]
对于上面第一个行列式,将第一列乘以 \(a\) 加到第二列上;然后将第二列乘以 \(a\) 加到第三列上;\(\cdots\);然后将第 \(n-1\) 列乘以 \(a\) 加到第 \(n\) 列上;最后将第 \(i\) 行提出公因子 \(x_i\),可化为 Vander Monde 行列式. 对于上面第二个行列式,将第 \(i\) 行提出公因子 \(x_i-a\),可化为 Vander Monde 行列式. 因此,我们有
\[|A|=\frac{1}{a}x_1\cdots x_n\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]
\[-\frac{1}{a}(x_1-a)\cdots(x_n-a)\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]
\[=\frac{1}{a}\Big(x_1\cdots x_n-(x_1-a)\cdots(x_n-a)\Big)\prod_{1\leq i<j\leq n}(x_j-x_i). \quad\Box\]
注 \(a\neq 0\) 时的结果,虽然表面上 \(a\) 出现在分母中 (只是为了看上去简洁),但它其实是一个关于 \(a\) 的多项式 (展开后即知),此时若令 \(a=0\),马上可以得到 \(a=0\) 时的结果. 这说明 \(a\neq 0\) 时的结果和 \(a=0\) 时的结果可以统一起来. 为什么会发生这种情况呢?感兴趣的同学可以参考如下教学论文《文字行列式求值中的两个技巧》。
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)的更多相关文章
- [问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...
- [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...
- [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)
[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- ACM题目————列变位法解密
这是在百度之星看到的. Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐 ...
- [JAVA] 冻结Excel的第一行或第一列
可以按照如下设置创建冻结窗口. sheet.createFreezePane( 3, 2, 3, 2 ); 前两个参数是你要用来拆分的列数和行数.后两个参数是下面窗口的可见象限,其中第三个参数是右边区 ...
- ACM学习历程—BestCoder 2015百度之星资格赛1002 列变位法解密(vector容器)
Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置 ...
- awk删除文件第一列
awk删除文件第一列 1.采用awk awk '{$1="";print $0}' file 2.采用sed sed -e 's/[^]* //' file sort -R fil ...
- [问题2014A02] 解答三(降阶公式法)
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...
随机推荐
- ES6 有什么新东西
ES6 有什么新东西? 你可能已经听说过 ECMAScript 6 (简称 ES6)了.ES6 是 Javascript 的下一个版本,它有很多很棒的新特性.这些特性复杂程度各不相同,但对于简单的脚本 ...
- 5_STL设计理念_迭代器
他山之石,可以攻玉. http://blog.csdn.net/jxh_123/article/details/30793397?utm_source=tuicool&utm_medium=r ...
- loading.gif
- Algorithm | Tree traversal
There are three types of depth-first traversal: pre-order,in-order, and post-order. For a binary tre ...
- php 生成唯一id的几种解决方法
php 生成唯一id的几种解决方法 网上查了下,有很多的方法 1.md5(time() . mt_rand(1,1000000)); 这种方法有一定的概率会出现重复 2.php内置函数uniqid ...
- 优秀API设计的十大原则
优秀API设计的十大原则 2015-09-23 分类:编程开发.设计模式.首页精华暂无人评论 分享到:更多4 二十万年薪PHP工程师培养计划 成为被疯抢的Android牛人 风中叶讲Java重难 ...
- 小试牛刀3之JavaScript基础题
JavaScript基础题 1.让用户输入两个数字,然后输出相加的结果. *prompt() 方法用于显示可提示用户进行输入的对话框. 语法: prompt(text,defaultText) 说明: ...
- 与子域名共用session信息
参考自 http://www.jb51.net/article/19664.htm 下面的步骤只使用于两个域名在同一个服务起得情况下,如果不在一个服务器上,就需要考虑通过数据库来存储session信息 ...
- windows7打印时,显示脱机,提示“服务器打印后台处理程序服务没有运行”。
1. 问题 windows7打印时,显示脱机,提示“服务器打印后台处理程序服务没有运行”. 2. 解决方法. 将下面的文字保存为bat文件执行,其中\\192.168.40.110\Lenovo M7 ...
- Java基础必备 -- 堆栈、引用传值、垃圾回收等
在Java中,对象作为函数参数的传递方式是值传递还是引用传递?String str = "abc" 与 String str = new String("abc&quo ...