[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

(1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为

\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big),\]

其中 \(\hat{x}_i\) 表示 \(x_i\) 不在其中.

(2)  当 \(a\neq 0\) 时,我们有

\[|A|=\frac{1}{a}\begin{vmatrix} a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}\]

\[=\frac{1}{a}\begin{vmatrix} x_1-(x_1-a) & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-(x_2-a) & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-(x_n-a) & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]

按第一列拆分成两个行列式之差,有

\[|A|=\frac{1}{a}\begin{vmatrix} x_1 & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2 & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}-\frac{1}{a}\begin{vmatrix} x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n-a & x_n(x_n-a) & x_n^2(x_n-a) & \cdots & x_n^{n-1}(x_n-a) \end{vmatrix}.\]

对于上面第一个行列式,将第一列乘以 \(a\) 加到第二列上;然后将第二列乘以 \(a\) 加到第三列上;\(\cdots\);然后将第 \(n-1\) 列乘以 \(a\) 加到第 \(n\) 列上;最后将第 \(i\) 行提出公因子 \(x_i\),可化为 Vander Monde 行列式. 对于上面第二个行列式,将第 \(i\) 行提出公因子 \(x_i-a\),可化为 Vander Monde 行列式. 因此,我们有

\[|A|=\frac{1}{a}x_1\cdots x_n\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]

\[-\frac{1}{a}(x_1-a)\cdots(x_n-a)\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}\]

\[=\frac{1}{a}\Big(x_1\cdots x_n-(x_1-a)\cdots(x_n-a)\Big)\prod_{1\leq i<j\leq n}(x_j-x_i). \quad\Box\]

  \(a\neq 0\) 时的结果,虽然表面上 \(a\) 出现在分母中 (只是为了看上去简洁),但它其实是一个关于 \(a\) 的多项式 (展开后即知),此时若令 \(a=0\),马上可以得到 \(a=0\) 时的结果. 这说明 \(a\neq 0\) 时的结果和 \(a=0\) 时的结果可以统一起来. 为什么会发生这种情况呢?感兴趣的同学可以参考如下教学论文《文字行列式求值中的两个技巧》。

[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)的更多相关文章

  1. [问题2014A01] 解答三(升阶法,由董麒麟同学提供)

    [问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...

  2. [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

    [问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...

  3. [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)

    [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...

  4. [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

    [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...

  5. ACM题目————列变位法解密

    这是在百度之星看到的. Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐 ...

  6. [JAVA] 冻结Excel的第一行或第一列

    可以按照如下设置创建冻结窗口. sheet.createFreezePane( 3, 2, 3, 2 ); 前两个参数是你要用来拆分的列数和行数.后两个参数是下面窗口的可见象限,其中第三个参数是右边区 ...

  7. ACM学习历程—BestCoder 2015百度之星资格赛1002 列变位法解密(vector容器)

    Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置 ...

  8. awk删除文件第一列

    awk删除文件第一列 1.采用awk awk '{$1="";print $0}' file 2.采用sed sed -e 's/[^]* //' file sort -R fil ...

  9. [问题2014A02] 解答三(降阶公式法)

    [问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...

随机推荐

  1. 面向对象static静态的属性和方法的调用

    <?php header("content-type:text/html;charset=utf-8"); class Human{ static public $name ...

  2. BizTalk动手实验(六)Orchestration开发

    1 课程简介 通过本课程熟悉Orchestration的相关开发与测试技术 2 准备工作 熟悉XML.XML Schema.XSLT等相关XML开发技术 熟悉.NET相关开发技术 新建BizTalk空 ...

  3. Ceph与OpenStack的Glance相结合

    http://docs.ceph.com/docs/master/rbd/rbd-openstack/?highlight=nova#kilo 在Ceoh的admin-node上进行如下操作: 1. ...

  4. 字节流与字符流的区别&&用字节流好还是用字符流好?

    字节流: (A)FileOutputStream(File name) 创建一个文件输出流,向指定的 File 对象输出数据. (B)FileOutputStream(FileDescriptor) ...

  5. yii2知识点详解

    yii2错误处理机制: 错误处理器将所有非致命PHP错误转换成可获取异常, 也就是说可以使用如下代码处理PHP错误 use Yii; use yii\base\ErrorException; try ...

  6. Summary of Mac Versions

    1.在 submit 的过程被 cancel 掉,可能会出现某些文件被 lock 住导致没办法再重新 update and commit. 解决方法: a) Memu."Action&quo ...

  7. webstorm svn 报错

    webstorm    svn 报错Cannot run program "svn": CreateProcess error=2, The system cannot find ...

  8. 论MySQL的监控和调优

    懂PHP的人一般都懂MySQL这一点不假,大多数书籍里也是这样,书中前面讲PHP后面到数据库这块就会讲到MySQL的一些知识,前几年MySQL一直是PHP书籍的一部分,后来开始从国外翻译了一些专门讲述 ...

  9. 《Linux内核分析》第七周 可执行程序的装载

    [刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK SEVEN ...

  10. Java学习-041-颜色工具类(RGB,HEX)

    在日常的网页开发中,经常需要进行颜色数值获取.转换,例如获取红色,获取蓝色,获取绿色,RGB转十六进制颜色,十六进制颜色转RGB等,因而在学习过程中,写了一个小工具类,仅供各位小主参考! 多不闲言,直 ...