今天才知道莫比乌斯反演还可以这样:$$F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$我好弱,,,对于$$F(i)=\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$$反演后$$f(i)=\sum_{i|d}\mu(\frac{d}{i})F(d)=\sum_{i|d}\mu(\frac{d}{i})\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$$因为$\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$的取值是$O(2(\sqrt{n}+\sqrt{m})$的,所以除法枚举这些取值再乘上区间内的$\mu$值就可以做到$O(n\sqrt{n})$时间内解决所有询问,区间内的$\mu$值用前缀和相减就可以了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
const int N = 50000;
int getint() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - '0';
return k * fh;
}
bool check[N + 3];
int prime[N + 3], mu[N + 3], sum[N + 3];
void shai() {
memset(check, 0, sizeof(check));
sum[1] = 1; mu[1] = 1; int num = 0;
for(int i = 2; i <= N; ++i) {
if (!check[i]) {
prime[++num] = i;
mu[i] = -1;
}
for(int j = 1; j <= num; ++j) {
if (i * prime[j] > N) break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0) {mu[i * prime[j]] = 0; break;}
else mu[i * prime[j]] = - mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
}
long long Q(int n, int m) {
if (n > m) swap(n, m);
long long ret = 0;
for(int i = 1, la = 0; i <= n; i = la + 1) {
la = min(n / (n / i), m / (m / i));
ret += (long long) (sum[la] - sum[i - 1]) * (n / i) * (m / i);
}
return ret;
}
int main() {
shai();
int a, b, c, d, k, T;
long long QQ;
read(T);
while (T--) {
read(a); read(b); read(c); read(d); read(k);
QQ = Q(b / k, d / k) - Q((a - 1) / k, d / k) - Q(b / k, (c - 1) / k) + Q((a - 1) / k, (c - 1) / k);
printf("%lld\n", QQ);
}
return 0;
}

233

【BZOJ 2301】【HAOI 2011】Problem b的更多相关文章

  1. 【BZOJ 2301】[HAOI2011]Problem b

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  2. 【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯 ...

  3. 【BZOJ】【2301】problem b

    莫比乌斯反演/容斥原理 Orz PoPoQQQ PoPoQQQ莫比乌斯函数讲义第一题. for(i=1;i<=n;i=last+1){ last=min(n/(n/i),m/(m/i)); …… ...

  4. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  5. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  6. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  7. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  8. 【BZOJ】【2084】【POI2010】Antisymmetry

    Manacher算法 啊……Manacher修改一下就好啦~蛮水的…… Manacher原本是找首尾相同的子串,即回文串,我们这里是要找对应位置不同的“反回文串”(反对称?233) 长度为奇数的肯定不 ...

  9. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

随机推荐

  1. 三维网格去噪算法(L0 Minimization)

    [He et al. 2013]文章提出了一种基于L0范数最小化的三角网格去噪算法.该思想最初是由[Xu et al. 2011]提出并应用于图像平滑,假设c为图像像素的颜色向量,▽c为颜色向量的梯度 ...

  2. 第5章 绘图基础_5.1-5.4 GDI绘图

    5.1 GDI的原理和结构 (1)提供一种特殊机制彻底隔离应用程序与不同输出设备(eg.显示器或打印机),以便支持 与设备无关的图形. 光栅设备(如显示器.激光打印机):图像是由点构成的矩阵 图形输出 ...

  3. Github 下载单个文件

    前言 通常我们对Github上的项目都是完整的clone下来,但对于某些大型项目,或者某些时候只需要其中一两个文件,那该怎么办呢? 本文就是教你如何在github上下载单个文件. 方法 1.找到需要下 ...

  4. JavaScript RegExp 对象

    JavaScript RegExp 对象 RegExp 对象用于规定在文本中检索的内容. 什么是 RegExp? RegExp 是正则表达式的缩写. 当您检索某个文本时,可以使用一种模式来描述要检索的 ...

  5. [No000001]一切都是最好的安排

    <一切都是最好的安排> 从前有一个国家,地不大,人不多,但是人民过着悠闲快乐的生活,因为他们有一位不喜欢做事的国王和一位不喜欢做官的宰相. 国王没有什么不良嗜好,除了打猎以外,最喜欢与宰相 ...

  6. 网络攻防比赛PHP版本WAF

    这次去打HCTF决赛,用了这个自己写的WAF,web基本上没被打,被打的漏洞是文件包含漏洞,这个功能在本人这个waf里确实很是捉急,由于只是简单检测了..和php[35]{0,1},导致比赛由于文件包 ...

  7. Centos5.8 iptables管理

    使用第三方提供的Centos5.8 vmx安装的虚拟机实例, 在安装Tomcat时发现启动后8080端口无法访问, 先检查是否selinux作了限制 查看selinux状态: sestatus 查看s ...

  8. HTTP 错误 500.22 - Internal Server Error

    HTTP 错误 500.22 - Internal Server Error 检测到在集成的托管管道模式下不适用的 ASP.NET 设置. 最可能的原因: 此应用程序在 system.web/http ...

  9. 未能正确加载包“Microsoft.Data.Entity.Design.Package.MicrosoftDataEntityDesignPackage

    本文出处:http://blog.sina.com.cn/s/blog_6fe3efa301016i64.html vs 2005 ,vs 2008, vs 2010,安装后有时出现这个错误(我的机器 ...

  10. Java集合系列:-----------04fail-fast总结(通过ArrayList来说明fail-fast的原理以及解决办法)

    前面,我们已经学习了ArrayList.接下来,我们以ArrayList为例,对Iterator的fail-fast机制进行了解.内容包括::1 fail-fast简介2 fail-fast示例3 f ...