【BZOJ 2301】【HAOI 2011】Problem b
今天才知道莫比乌斯反演还可以这样:$$F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$我好弱,,,对于$$F(i)=\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$$反演后$$f(i)=\sum_{i|d}\mu(\frac{d}{i})F(d)=\sum_{i|d}\mu(\frac{d}{i})\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$$因为$\left \lfloor \frac{n}{i} \right \rfloor\left \lfloor \frac{m}{i} \right \rfloor$的取值是$O(2(\sqrt{n}+\sqrt{m})$的,所以除法枚举这些取值再乘上区间内的$\mu$值就可以做到$O(n\sqrt{n})$时间内解决所有询问,区间内的$\mu$值用前缀和相减就可以了
#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
const int N = 50000;
int getint() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - '0';
return k * fh;
}
bool check[N + 3];
int prime[N + 3], mu[N + 3], sum[N + 3];
void shai() {
memset(check, 0, sizeof(check));
sum[1] = 1; mu[1] = 1; int num = 0;
for(int i = 2; i <= N; ++i) {
if (!check[i]) {
prime[++num] = i;
mu[i] = -1;
}
for(int j = 1; j <= num; ++j) {
if (i * prime[j] > N) break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0) {mu[i * prime[j]] = 0; break;}
else mu[i * prime[j]] = - mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
}
long long Q(int n, int m) {
if (n > m) swap(n, m);
long long ret = 0;
for(int i = 1, la = 0; i <= n; i = la + 1) {
la = min(n / (n / i), m / (m / i));
ret += (long long) (sum[la] - sum[i - 1]) * (n / i) * (m / i);
}
return ret;
}
int main() {
shai();
int a, b, c, d, k, T;
long long QQ;
read(T);
while (T--) {
read(a); read(b); read(c); read(d); read(k);
QQ = Q(b / k, d / k) - Q((a - 1) / k, d / k) - Q(b / k, (c - 1) / k) + Q((a - 1) / k, (c - 1) / k);
printf("%lld\n", QQ);
}
return 0;
}
233
【BZOJ 2301】【HAOI 2011】Problem b的更多相关文章
- 【BZOJ 2301】[HAOI2011]Problem b
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- 【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯 ...
- 【BZOJ】【2301】problem b
莫比乌斯反演/容斥原理 Orz PoPoQQQ PoPoQQQ莫比乌斯函数讲义第一题. for(i=1;i<=n;i=last+1){ last=min(n/(n/i),m/(m/i)); …… ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】【2084】【POI2010】Antisymmetry
Manacher算法 啊……Manacher修改一下就好啦~蛮水的…… Manacher原本是找首尾相同的子串,即回文串,我们这里是要找对应位置不同的“反回文串”(反对称?233) 长度为奇数的肯定不 ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
随机推荐
- UVALive 5066 Fire Drill --BFS+DP
题意:有一个三维的地图,有n个人被困住,现在消防队员只能从1楼的一个入口进入,营救被困者,每一个被困者有一个价值,当消防队员找到一个被困者之后,他可以营救或者见死不救,如果救的话,他必须马上将其背到入 ...
- POJ 1696 Space Ant 【极角排序】
题意:平面上有n个点,一只蚂蚁从最左下角的点出发,只能往逆时针方向走,走过的路线不能交叉,问最多能经过多少个点. 思路:每次都尽量往最外边走,每选取一个点后对剩余的点进行极角排序.(n个点必定能走完, ...
- HTML标签----图文详解
国庆节快乐,还在加班的童鞋,良辰必有重谢! 本文主要内容 头标签 排版标签:<p> <br> <hr> <center> ...
- Adobe Air移动开发本人体会
采用FLASH BUILD4.6开发 1.没有mx:Canvas了,s:BordContainer未经手机优化,也不敢用,只有用s:Group 2.好多控件没有了,如DropDownList,Prog ...
- 精通CSS version2笔记之⒈选择器
1.常用的选择器:①元素选择器 指定希望应用样式的元素.比如:p {color:#fff;}②后代选择器 寻找特定元素或者元素的后代. 比如:body p{color:#ccc;} 这个选 ...
- 逗号分隔的字符串转换为行数据(collection)
逗号分隔的字符串转换为行数据(collection) CREATE OR REPLACE FUNCTION "GET_STR_TAB" (v_str in varchar2) re ...
- sublime text2安装package control的方法
Package Control 方法一:在线安装,首先打开 Ctrl + ~,输入如下的代码: import urllib2,os; pf='Package Control.sublime-packa ...
- 在表单中元素的onchange事件的兼容性问题
onchange:在值发生改变的时候触发 text:当光标离开的时候如果内容有变化就触发 radio/check:标准浏览器下点击的时候只要值变了就触发 非标准浏览器下焦点离开的时候如果值变了就触发
- tomcat启动时报错
http://www.oschina.net/question/1162040_229925?sort=time 解决:
- mybatis 3.x 缓存Cache的使用
mybatis 3.x 已经支持cache功能了,使用很简单,在mappper的xml文件里添加以下节点: <mapper namespace="com.cnblogs.yjmyzz. ...