自然语言17_Chinking with NLTK
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

https://www.pythonprogramming.net/chinking-nltk-tutorial/?completed=/chunking-nltk-tutorial/
代码
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 13 09:14:13 2016 @author: daxiong
"""
import nltk
from nltk.corpus import state_union
from nltk.tokenize import PunktSentenceTokenizer #训练数据
train_text=state_union.raw("2005-GWBush.txt")
#测试数据
sample_text=state_union.raw("2006-GWBush.txt")
'''
Punkt is designed to learn parameters (a list of abbreviations, etc.)
unsupervised from a corpus similar to the target domain.
The pre-packaged models may therefore be unsuitable:
use PunktSentenceTokenizer(text) to learn parameters from the given text
'''
#我们现在训练punkttokenizer(分句器)
custom_sent_tokenizer=PunktSentenceTokenizer(train_text)
#训练后,我们可以使用punkttokenizer(分句器)
tokenized=custom_sent_tokenizer.tokenize(sample_text) '''
nltk.pos_tag(["fire"]) #pos_tag(列表)
Out[19]: [('fire', 'NN')]
'''
'''
#测试语句
words=nltk.word_tokenize(tokenized[0])
tagged=nltk.pos_tag(words)
chunkGram=r"""Chunk:{<RB.?>*<VB.?>*<NNP>+<NN>?}"""
chunkParser=nltk.RegexpParser(chunkGram)
chunked=chunkParser.parse(tagged)
#lambda t:t.label()=='Chunk' 包含Chunk标签的列
for subtree in chunked.subtrees(filter=lambda t:t.label()=='Chunk'):
print(subtree)
''' #文本词性标记函数
def process_content():
try:
for i in tokenized[0:5]:
words = nltk.word_tokenize(i)
tagged = nltk.pos_tag(words) chunkGram = r"""Chunk: {<.*>+}
}<VB.?|IN|DT|TO>+{""" chunkParser = nltk.RegexpParser(chunkGram)
chunked = chunkParser.parse(tagged) chunked.draw() except Exception as e:
print(str(e)) process_content()

百度文库参考
http://wenku.baidu.com/link?url=YIrqeVS8a1zO_H0t66kj1AbUUReLUJIqId5So5Szk0JJAupyg_m2U_WqxEHqAHDy9DfmoAAPu0CdNFf-rePBsTHkx-0WDpoYTH1txFDKQxC



chinking可用于提取句子主干,去除不需要的修饰语

Chinking with NLTK
You may find that, after a lot of chunking, you have some words in
your chunk you still do not want, but you have no idea how to get rid
of them by chunking. You may find that chinking is your solution.
Chinking is a lot like chunking, it is basically a way for you to
remove a chunk from a chunk. The chunk that you remove from your chunk
is your chink.
The code is very similar, you just denote the chink, after the chunk, with }{ instead of the chunk's {}.
import nltk
from nltk.corpus import state_union
from nltk.tokenize import PunktSentenceTokenizer train_text = state_union.raw("2005-GWBush.txt")
sample_text = state_union.raw("2006-GWBush.txt") custom_sent_tokenizer = PunktSentenceTokenizer(train_text) tokenized = custom_sent_tokenizer.tokenize(sample_text) def process_content():
try:
for i in tokenized[5:]:
words = nltk.word_tokenize(i)
tagged = nltk.pos_tag(words) chunkGram = r"""Chunk: {<.*>+}
}<VB.?|IN|DT|TO>+{""" chunkParser = nltk.RegexpParser(chunkGram)
chunked = chunkParser.parse(tagged) chunked.draw() except Exception as e:
print(str(e)) process_content()
With this, you are given something like:

Now, the main difference here is:
}<VB.?|IN|DT|TO>+{
此句表示,我们移除一个或多个动词,介词,定冠词,或to
This means we're removing from the chink one or more verbs, prepositions, determiners, or the word 'to'.
Now that we've learned how to do some custom forms of chunking, and chinking, let's discuss a built-in form of chunking that comes with NLTK, and that is named entity recognition.
自然语言17_Chinking with NLTK的更多相关文章
- 转 --自然语言工具包(NLTK)小结
原作者:http://www.cnblogs.com/I-Tegulia/category/706685.html 1.自然语言工具包(NLTK) NLTK 创建于2001 年,最初是宾州大学计算机与 ...
- 自然语言22_Wordnet with NLTK
QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/wordnet-nltk-tutorial/?completed=/nltk-c ...
- 自然语言16_Chunking with NLTK
Chunking with NLTK 对chunk分类数据结构可以图形化输出,用于分析英语句子主干结构 # -*- coding: utf-8 -*-"""Created ...
- Python自然语言处理工具NLTK的安装FAQ
1 下载Python 首先去python的主页下载一个python版本http://www.python.org/,一路next下去,安装完毕即可 2 下载nltk包 下载地址:http://www. ...
- Python自然语言工具包(NLTK)入门
在本期文章中,小生向您介绍了自然语言工具包(Natural Language Toolkit),它是一个将学术语言技术应用于文本数据集的 Python 库.称为“文本处理”的程序设计是其基本功能:更深 ...
- Python NLTK 自然语言处理入门与例程(转)
转 https://blog.csdn.net/hzp666/article/details/79373720 Python NLTK 自然语言处理入门与例程 在这篇文章中,我们将基于 Pyt ...
- NLTK在自然语言处理
nltk-data.zip 本文主要是总结最近学习的论文.书籍相关知识,主要是Natural Language Pracessing(自然语言处理,简称NLP)和Python挖掘维基百科Infobox ...
- Python自然语言处理工具小结
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...
- 自然语言处理(NLP)入门学习资源清单
Melanie Tosik目前就职于旅游搜索公司WayBlazer,她的工作内容是通过自然语言请求来生产个性化旅游推荐路线.回顾她的学习历程,她为期望入门自然语言处理的初学者列出了一份学习资源清单. ...
随机推荐
- MySql数据类型问题
1. mysql时间函数 DATE_ADD(now(), INTERVAL 1 DAY) AS tomorrow DATE_SUB(now(), INTERVAL 1 DAY) AS yesterda ...
- WPS显示无法创建对象,请确认对象已在系统注册表中注册
第一种方法:在系统的开始--所有程序找到WPS--WPS office工具--配置工具--高级--兼容设置,在这里勾选兼容第三方系统和软件. 第二种方法: xp/win7系统:拷贝packager.e ...
- 【BZOJ 2599】【IOI 2011】Race 点分治
裸的点分治,然而我因为循环赋值$s$时把$i <= k$写成$i <= n$了,WA了好长时间 #include<cstdio> #include<cstring> ...
- 使用HTML5新特性Mutation Observer实现编辑器的撤销和撤销回退操作
MutationObserver介绍 MutationObserver给开发者们提供了一种能在某个范围内的DOM树发生变化时作出适当反应的能力.该API设计用来替换掉在DOM3事件规范中引入的Mut ...
- IE6和IE7中<a>标签宽高设置无效的问题
昨天写了一个引导界面, 发现界面中的IE67存在一个问题, 在某些情况下, A锚链接如果设置了宽高,而且position:absolute的情况下, A标签的宽高无效, 至于总体的效果, 因为这个A ...
- json:There is a cycle in the hierarchy!
在使用JSONObject.fromObject的时候,出现“There is a cycle in the hierarchy”异常. 意思是出现了死循环,也就是Model之间有循环包含关系: 解决 ...
- C#-面向对象的三大特性——继承
继承 注意事项: 继承语法: 类名:父类名 父类也称之为 基类 ,子类也可以成为 xxx的派生类 或 超类. 父类可以有无限个子类,子类只能有一个父类(亲爹),可以有无限个接口(干爹) 子类并不是 ...
- kali 2.0 启动metasploit服务
kali 2.0 已经没有metasploit 这个服务了,所以service metasploit start 的方式不起作用. 在kali 2.0中启动带数据库支持的MSF方式如下: 首先启动po ...
- komodo,mysql workBeach
跨平台的好软件,只不过自己的眼界太狭隘 Ubuntu下PPA安装,打开终端输入命令: sudo add-apt-repository ppa:mystic-mirage/komodo-edit ...
- bzoj2959: 长跑
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
