前言

  鉴于机器学习产生自计算机科学,模式识别却起源于工程学。然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展。特别是,当图像模型已经作为一个用来描述和应用概率模型的框架出现时,贝叶斯定理(Bayesian methods)就已经从一个专家级别的知识范畴发展成为主流。通过一系列近似算法推论,例如变分贝叶斯和期望传播(variational Bayes and expectation propagation),贝叶斯定理的实际适用范围也已经大幅度的提高。与此同时,基于核心程序的新模型在算法和应用方面都已经有了重要的影响。

这本新书对模式识别和机器学习提供一个综合性介绍,同时也反映了当下的发展状况。它是主要针对优秀的研究生或者第一年的博士生,还有相关研究人员和从业者,同时假定大家对模式识别和机器学习概念知识没有任何学习经历,以此为基础来设计的。当然,多元微积分和基础的线性代数是需要的,并且一定程度精通概率论将会是有帮助的,虽然没有强制性要求,因为本书自身包含了对于基础概率理论的介绍。

因为这本书涉及范围广,所以提供一个完整的推导过程是不可能的,并且不打算特别的介绍理念的精准的历史归属。相反,我们的目标是给予参考,而这些参考能提供最大可能的细节,并且在一些情况下希望对这个非常广泛的课题文献提供一个入口点。为了这个理由,参考文献大部分是现今的教科书和评论文章而不是原始的资源。

本书引用大量额外资料,包括课程幻灯片和完全用在课本上的图标。并且鼓励读者去本书网站获得最新的信息:http://research.microsoft.com/∼cmbishop/PRML

习题

出现在每节结尾的习题是这本书的一个重要组成部分。每道习题都是精心挑选用来加强在文中解释的概念,或者以有意义的方式发展和推广它们,并且每道题根据难度分成了一星到三星,一星代表着简单的习题,只需要几分钟就可以完成;三星代表着显著更难的习题。

对于哪些习题范围给予答案才能广泛的使大家受益,这已经很难知道了。自主学习的人将会发现现成的答案非常有益,同时许多课程教师请求只通过发布者给出的答案才更好,因为这样这些练习就可以运用在课堂上。为了努力达到这个相互矛盾的要求,那些用来帮助详述文中关键点或者补充重要细节的练习题将会有现成的答案,这些答案以一个PDF文件发布在本书的网站上。对于剩下的习题答案教师可以通过和发布者联系获得(联系方式发布在本书网站上)。强烈鼓励读者在没有受到帮助的情况下解决这些习题,只有在必须的情况下才去看答案。

虽然这本书关注于概念和原则,但是在理念上学生在上课时应该有机会用恰当的数集去实验一些关键的算法。一个姐妹篇(Bishop and Nabney,2008)将会解决图像识别和机器学习的实践方面,并且将用Matlab软件实践大部分的在书中讨论的算法。

感谢

首先我将要真诚的感谢Markus Svens´ en,他在图表和本书的排版上提供了巨大的帮助。他的协助是无价的。

我对微软研究院(Microsoft Research)非常感谢,因为其提供我一个高度促进的研究环境和给予我自由来写这本书(本书的观点和见解仅表个人所观点,与微软和其各附属机构无关)。

Springer对于这本书的准备的最后环节提供了极大的支持,并且我将感谢委任编辑John Kimmel的支持和专业性。同时对于Joseph Piliero的封面设计和文章格式,MaryAnn Brickner的许多生产环节的帮助表示感谢。这个封面设计的灵感来自于和Antonio Criminisi讨论。

我也希望感谢牛津大学出版(Oxford University Press)社对于一本前面出版的书Neural Networks for Pattern Recognition(Bishop,1995a)的引用的允许。Mark 1感知器和Frank Rosenblatt图片的复制得到了Arvin Calspan Advanced Technology Center的允许。我也要感谢Asela Gunawardana在图13.1为我画的光谱图,同时感谢Bernhard Sch¨ olkopf允许我运用他的核心代码PCA来画图12.17。

许多人在校对草稿资料和提供意见和建议方面提供了帮助,其中有Shivani Agarwal, C´ edric Archambeau, Arik Azran,Andrew Blake, Hakan Cevikalp, Michael Fourman, Brendan Frey, Zoubin Ghahramani, Thore Graepel, Katherine Heller, Ralf Herbrich, Geoffrey Hinton, Adam Johansen, Matthew Johnson, Michael Jordan, Eva Kalyvianaki, Anitha Kannan, Julia Lasserre, David Liu, Tom Minka, Ian Nabney, Tonatiuh Pena, Yuan Qi, Sam Roweis,Balaji Sanjiya, Toby Sharp, Ana Costa e Silva, David Spiegelhalter, Jay Stokes, Tara Symeonides, Martin Szummer, Marshall Tappen, Ilkay Ulusoy, Chris Williams, JohnWinn, and Andrew Zisserman。

最后,感谢我的妻子Jenna,是她极力的支持我度过了写这本书的这些年。

Chris Bishop

Cambridge

February 2006

ps:小弟第一次翻译,又是非专业英语,各种错误和错解望各位大侠指正和指导,这是这本书的preface。谢谢您花时间观看和支持。谁有比较正版的pdf可以传我一份最好,感激不尽。

Pattern Recognition and Machine Learning (preface translation)的更多相关文章

  1. Pattern Recognition And Machine Learning读书会前言

    读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲 ...

  2. 今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)

    转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反 ...

  3. Pattern recognition and machine learning 疑难处汇总

    不断更新ing......... p141 para 1. 当一个x对应的t值不止一个时,Gaussian nosie assumption就不合适了.因为Gaussian 是unimodal的,这意 ...

  4. 今天开始学习模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。

    话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧, ...

  5. 神经网络作业: NN LEARNING Coursera Machine Learning(Andrew Ng) WEEK 5

    在WEEK 5中,作业要求完成通过神经网络(NN)实现多分类的逻辑回归(MULTI-CLASS LOGISTIC REGRESSION)的监督学习(SUOERVISED LEARNING)来识别阿拉伯 ...

  6. 学习笔记-----《Pattern Recognition and Machine Learning》Christopher M. Bishop

    Preface 模式识别这个词,以前一直不懂是什么意思,直到今年初,才开始打算读这本广为推荐的书,初步了解到,它的大致意思是从数据中发现特征,规律,属于机器学习的一个分支. 在前言中,阐述了什么是模式 ...

  7. Pattern Recognition and Machine Learning 模式识别与机器学习

    模式识别(PR)领域:     关注的是利⽤计算机算法⾃动发现数据中的规律,以及使⽤这些规律采取将数据分类等⾏动. 聚类:目标是发现数据中相似样本的分组. 反馈学习:是在给定的条件下,找到合适的动作, ...

  8. Pattern Recognition And Machine Learning (模式识别与机器学习) 笔记 (1)

    By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础 ...

  9. Machine learning (6-Logistic Regression)

    1.Classification However, 2.Hypothesis Representation Python code: import numpy as np def sigmoid(z) ...

随机推荐

  1. javaScript与MVC

    MVC,就是Module,View,Controller分离,使业务逻辑更加清晰,但是现在公司的项目中很多地方那个不是这样的,很多业务逻辑放在了javascript中实现,这样做的优点就是对于技术要求 ...

  2. codeforces 723A : The New Year: Meeting Friends

    Description There are three friend living on the straight line Ox in Lineland. The first friend live ...

  3. FastCopy包含和排除文件夹处理

    包含和排除文件夹操作: 1.有多个时,用[;]进行分割. 2.可指定文件夹深度,也可以不用指定,直接最终名称. 3.不用指定盘符. 4.名称后面带上反斜杠[\]. 假如有两个文件夹:F:\A,F:\B ...

  4. Jenkins 2.x新建节点配置(Windows)

    2.0版本以上默认加入了权限插件,所以在进入主界面时是需要登录的. 一.主界面->[系统管理]->[管理节点]->[新建节点],进行节点的添加: 二.输入节点名称,已经选择[Perm ...

  5. install docker on xubuntu

    ref: https://docs.docker.com/engine/installation/linux/ubuntulinux/#/install-the-latest-version ps: ...

  6. ELF Executable Reconstruction From A Core Image

    catalog . INTRODUCTION . THE PROCESS IMAGE . THE CORE IMAGE . EXECUTABLE RECONSTRUCTION . FAILURES I ...

  7. Linux Overflow Vulnerability General Hardened Defense Technology、Grsecurity/PaX

    Catalog . Linux attack vector . Grsecurity/PaX . Hardened toolchain . Default addition of the Stack ...

  8. iOS 自定义对象转NSDictionary

    我们在向后台Post数据的时候,常常需要把某个对象作为参数,比如在AF的框架中,我们进行Post时,其中的para参数就是需要NSdictionary的 Alamofire.request(.POST ...

  9. CentOS设置防火墙开放端口

    1. iptables是linux下的防火墙,同时也是服务的名称. service iptables status service iptables start service iptables st ...

  10. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...