1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit:
3800  Solved: 1848
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai,
Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利
= 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i +
2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3
4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】
80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

Source

Solution

非常显然的一个最小割模型:最大权闭合子图

若a,b之间有一条收益为c的边,则新建一个点,点权为c,分别向a,b连边,a,b点权为他们的花费,这样转换成求最大权闭合子图

那么最大权闭合子图模型

原图中的边,容量为inf

S向正权点连边,容量为点权

负权点向T连边,容量为点权的相反数

大题的思路

假设选取所有的正权点,那么在S处割表示删掉一个正权点,在T处割表示加入一个负权点

使删掉的正权和加上的负权最小,转化成一个最小的问题

那么答案就是正权和-最小割

Code

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define inf 0x7fffffff
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
struct Edgenode{int to,cap,next;}edge[];
int head[],cnt=;
int n,m,S,T,ans;
int dis[],cur[];
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,);}
void init()
{
n=read(),m=read();
S=;
T=n+m+;
// memset(head,0xff,sizeof(head));
for (int x,i=;i<=n;i++)
{
x=read();
insert(S,i,x);
}
for (int u,v,w,i=;i<=m;i++)
{
u=read(),v=read(),w=read();
ans+=w;
insert(u,n+i,inf);
insert(v,n+i,inf);
insert(n+i,T,w);
}
}
int q[<<];
bool bfs()
{
memset(dis,-,sizeof(dis));
q[]=S; dis[S]=;
int he=,ta=;
while (he<ta)
{
int now=q[++he];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q[++ta]=edge[i].to;
}
return dis[T]!=-;
} int dfs(int loc,int low)
{
if(loc==T)return low;
int flow,cost=;
for(int i=cur[loc]; i; i=edge[i].next)
if (dis[edge[i].to]==dis[loc]+)
{
flow=dfs(edge[i].to,min(low-cost,edge[i].cap));
edge[i].cap-=flow; edge[i^].cap+=flow;
if(edge[i].cap) cur[loc]=i;
cost+=flow; if(cost==low)return low;
}
if(!cost) dis[loc]=-;
return cost;
} int dinic()
{
int temp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
temp+=dfs(S,inf);
}
return temp;
}
void work()
{
ans-=dinic();
printf("%d",ans);
}
int main()
{
init();
work();
return ;
}

自己本来并没要做这个题..帮旁边的YveH调A了此题...所以也顺便改了改A了一发

【BZOJ-1497】最大获利 最大流的更多相关文章

  1. BZOJ 1497 最大获利(最大权闭合图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 4686  Solved: 2295 [Submit][Statu ...

  2. bzoj 1497 最大获利 - 最小割

    新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研 ...

  3. BZOJ 1497 最大获利(最大权闭合子图)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...

  4. BZOJ 1497 最大获利

    最大权闭合子图 对于这个题,可以抽象成一个图论模型,如果我们把用户与其要求建立的中转站连边,获得的利益看成正权值,付出的代价看成负权值,我们可以发现,选取一个用户的时候,就相当于选取了一个闭合子图. ...

  5. HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)

    http://acm.hdu.edu.cn/showproblem.php?pid=3879 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 ...

  6. [bzoj 1449] 球队收益(费用流)

    [bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...

  7. BZOJ 1497: [NOI2006]最大获利( 最大流 )

    下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...

  8. BZOJ 1497 JZYZOJ 1344 [NOI2006]最大获利 网络流 最大权闭合图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 http://172.20.6.3/Problem_Show.asp?id=1344   思路 ...

  9. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  10. 【BZOJ 1497】 [NOI2006]最大获利

    Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一 ...

随机推荐

  1. Linux的chattr与lsattr命令

    有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chattr命令的作用很大,其中一些功能是由Linux内核版本来支持的,不过现在生产绝大部分跑的linux ...

  2. Windows 8.1 新增控件之 CommandBar

    上一篇为大家介绍了AppBar 的相关内容,本篇继续介绍CommandBar 的使用方法.与AppBar 相比而言,CommandBar 在开发使用方面较为单一,在按键布局上分为主控区(Primary ...

  3. 将函数传给webworker

    var zWorker = function (func,cb){ var node = document.createElement('script'),workerId='worker' + Da ...

  4. 如果动态设置json对象的key

    项目中要求动态设置json的key属性,如果按照一般的json设置方法是不行的.假如你把一个key设置为一个变量的话,那么最后js解析出来的就是key为这个变量名而不是这个变量的值. 解决:通过使用 ...

  5. sleep和wait的区别有:

    sleep和wait的区别有: 1,这两个方法来自不同的类分别是Thread和Object 2,最主要是sleep方法没有释放锁,而wait方法释放了锁,使得敏感词线程可以使用同步控制块或者方法. 3 ...

  6. struts2 访问Web元素的4种方法

    完整代码 :Struts12AccessWebElement.rar 第一种也是最常用的一种方法实现这几个接口 RequestAware,SessionAware,ApplicationAware s ...

  7. href的那些事

    很多网站中都会使用<a>标签和 href属性来做链接,尤其在分页显示中用得最普遍.然而很多人对href的使用却并不十分了解. 1.href="#" 这个在网页中上滚回顶 ...

  8. 拥抱 HTML5:storage 简介以及使用方法

    前言 storage 其实是个很简单的东西,基本上只要知道 javascript 中对象的概念,然后读完此文,storage 的用法也就了然于胸了. 简单来说,你可以把 storage 想象成是储存在 ...

  9. Nodejs基础:路径处理模块path总结

    模块概览 在nodejs中,path是个使用频率很高,但却让人又爱又恨的模块.部分因为文档说的不够清晰,部分因为接口的平台差异性. 将path的接口按照用途归类,仔细琢磨琢磨,也就没那么费解了. 获取 ...

  10. 深入理解OOP(二):多态和继承(继承)

    本文是深入浅出OOP第二篇,主要说说继承的话题. 深入理解OOP(一):多态和继承(初期绑定和编译时多态) 深入理解OOP(二):多态和继承(继承) 深入理解OOP(三):多态和继承(动态绑定和运行时 ...