1.背景

《算法》一书中提到了关于算法的一些基本思想

  • 优秀的算法因为能够解决实际的问题而变得更为重要;
  • 高效算法的代码可以很简单;
  • 理解某个实现的性能特点是一项有趣而令人满足的挑战;
  • 在解决同一个问题的多种算法之间进行选择时,科学方法是一项重要工具;
  • 迭代式改进能够让算法效率越来越高;

使用union-find算法解决连通性问题,所谓连通性问题就是在下图网络中可以看到有很多节点,节点与节点之间的连接对称为连通分量,要求编写程序判断网络中有多少组连通分量,随意给出两个节点要求判断这两个节点是否属于同一个分量。在连通图中有如下一些定义,假如一个节点p没有和任何其他节点相连,则此节点属于一个连通分量,如果一个节点p和节点q相连,则p-q为一个连通分量,如果p和q相连,q和r相连,则p-q-r为一个连通分量。

2.算法分析

……

3.算法实现

为了解决此问题,需要先设计一个API来封装所需要的基本操作:初始化,连接两个节点,判断包含某个节点的分量,判断两个节点是否属于同一个分量之中,并且返回所有分量的个数。

public class UF
UF(int N) 整数标示N个节点
void union(int p, int q) 在pq之间添加一条连线,标示连接pq
int find(int p) 节点p所在分量的标示符
Boolean connected(int p, int q) 如果p和q存在于同一个分量中则返回true
int count() 连通分量的个数

代码实现一:

import java.util.Scanner;
public class UF {
private int[] id; //分量的id
private int count; //分量的数量 //初始化分量id数组
public UF(int N) {
count = N;
id = new int[N];
for (int i = 0; i < N; i++) {
id[i] = i;
}
} //返回分量的数量
public int count() {
return count;
} //判断两个节点是否属于同一个分量
public boolean connected(int p, int q) {
return find(p) == find(q);
} //求节点p所属的分量id
public int find(int p) {
return id[p];
} //连接节点pq
//首先检查pq是否在同一个分量中,如果是则不做任何操作,否则要求p所在的连通分量中
//所有节点id必须相同,q所在的连通分量中所有节点id也相同但为另外的值,要将二者合
//二为一,则将q所在分量的所有节点id均变为p节点的id或相反
public void union(int p, int q) {
int pId = find(p);
int qId = find(q); if (pId == qId) {
return;
} for (int i = 0; i < id.length; i++) {
if (id[i] == qId) {
id[i] = pId;
}
}
count--;
} public static void main(String[] args) {
@SuppressWarnings("resource")
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();
UF uf = new UF(N); while (scanner.hasNext()) {
int p = scanner.nextInt();
int q = scanner.nextInt();
if (uf.connected(p, q)) {
continue;
}
uf.union(p, q);
System.out.println(p + "--" + q);
}
System.out.println(uf.count() + " components");
}
}

使用这种find和union实现可以看到,对于find操作非常快,但对于union每一对节点输入都可能需要进行对整个id数组进行遍历,对于id数组的访问时间为O(N^2),所以当输入节点很多时用这个算法来统计连通分量就不行了,此时union的时间复杂度为O(N),find的复杂度为O(1)。

代码实现二:

public int find2(int p) {
while (p != id[p]) {
p = id[p];
}
return p;
} public void union2(int p, int q) {
int pId = find2(p);
int qId = find2(q); if (pId == qId) {
return;
} id[qId] = pId;
count--;
}

使用这种find2和union2实现可以看到,对于调用到find2时,在某些情况下对于id数组访问的时间复杂度依然为O(N^2),此时find2的时间复杂度为树的高度N,union2的复杂度也为树的高度N。

代码实现三:

public class WeightedQuickUF {
private int[] id; //节点的索引
private int[] w; //每个根节点对应分量的大小
private int count; public WeightedQuickUF(int N) {
count = N;
id = new int[N];
w = new int[N];
for (int i = 0; i < N; i++) {
id[i] = i;
w[i] = 1;
}
} //返回分量的数量
public int count() {
return count;
} //判断两个节点是否属于同一个分量
public boolean connected(int p, int q) {
return find(p) == find(q);
} public int find(int p) {
while (p != id[p]) {
p = id[p];
}
return p;
} public void union(int p, int q) {
int pId = find(p);
int qId = find(q); if(pId == qId) {
return;
} if (w[pId] < w[qId]) {
id[pId] = qId;
w[qId] += w[pId];
} else {
id[qId] = pId;
w[pId] += w[qId];
}
count--;
}
}

对第二种实现做一些改进,使用加权的算法,使用加权算法保证在使用union时总是将小树的根节点连接到大树上,此时find和union的复杂度均为树的高度lgN,所以访问id数组的复杂度最坏情况为cMlgN,此时C为常数,M为连接数,N为节点数。

union-find算法的更多相关文章

  1. 算法与数据结构基础 - 合并查找(Union Find)

    Union Find算法基础 Union Find算法用于处理集合的合并和查询问题,其定义了两个用于并查集的操作: Find: 确定元素属于哪一个子集,或判断两个元素是否属于同一子集 Union: 将 ...

  2. LeetCode编程训练 - 合并查找(Union Find)

    Union Find算法基础 Union Find算法用于处理集合的合并和查询问题,其定义了两个用于并查集的操作: Find: 确定元素属于哪一个子集,或判断两个元素是否属于同一子集 Union: 将 ...

  3. 最小生成树——Kruskal(克鲁斯卡尔)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 ...

  4. Kruscal算法求图的最小生成树

    Kruscal算法求图的最小生成树 概述   和Prim算法求图的最小生成树一样,Kruscal算法求最小生成树也用到了贪心的思想,只不过前者是贪心地选择点,后者是贪心地选择边.而且在算法的实现中,我 ...

  5. MySQL 优化之 index merge(索引合并)

    深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...

  6. MYSQL-联合索引

    深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...

  7. MySQL index merge

    深入理解 index merge 是使用索引进行优化的重要基础之一. [ index merge]       当where谓词中存在多个条件(或者join)涉及到多个字段,它们之间进行 AND 或者 ...

  8. MySQL 查询优化之 Index Merge

    MySQL 查询优化之 Index Merge Index Merge Intersection 访问算法 Index Merge Union 访问算法 Index Merge Sort-Union ...

  9. MySQL 优化之 index_merge (索引合并)

    深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...

  10. HNCU1323:算法2-1:集合union (线性表)

    http://hncu.acmclub.com/index.php?app=problem_title&id=111&problem_id=1323 题目描述 假设利用两个线性表LA和 ...

随机推荐

  1. HDU 5877 Weak Pair(树状数组+dfs+离散化)

    http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: 给出一棵树,每个顶点都有权值,现在要你找出满足要求的点对(u,v)数,u是v的祖先并且a[u]*a ...

  2. WPF基础学习笔记整理 (八) 命令

    基础知识: 命令是应用程序的任务,并跟踪任务是否能够被执行. 命令不包含执行应用程序任务的代码. 命令是比事件更高级的元素.默认的命令目标是当前获得焦点的元素. 良好的Win应用程序,应用程序逻辑不应 ...

  3. Windows下使用pip安装python包是报错-UnicodeDecodeError: 'ascii' codec can't decode byte 0xcb in position 0

    先交待下开发环境: 操作系统:Windows 7 Python版本:2.7.9 Pip版本:6.1.1 其他环境忽略 在windows下使用pip下载python包,出现如下错误 Collecting ...

  4. Codeforces 595B - Pasha and Phone

    595B - Pasha and Phone 代码: #include<bits/stdc++.h> using namespace std; #define ll long long # ...

  5. webpack 多页面支持 & 公共组件单独打包

    webpack - 多页面/入口支持 & 公共组件单独打包 webpack系列目录 webpack 系列 一:模块系统的演进 webpack 系列 二:webpack 介绍&安装 we ...

  6. js事件轮询机制

    console.log(1) setTimeout(function(){ console.log(2) },0); console.log(3) 毫无疑问:运行结果是1 3 2 也就是说:setTi ...

  7. Win7 默认.lnk打开方式全是别的程序 还原的办法

    Xu言: no zuo no die~ 今天,一个朋友问我,他电脑桌面上点任何东西都是提示下载... - -||| 本以为是中毒了,然后上去看了一眼..发现他自己把所有.lnk 的默认打开方式选择了搜 ...

  8. 3-1 LVS-NAT集群

    ---- (整理)By 小甘丶 什么是集群: 集群是一组相互独立的.通过高速网络互联的计算机,它们构成了一个组,并以单一系统的模式加以管理.(Cluster就是一组计算机,它们作为一个整体向用户提供一 ...

  9. python 爬取京东手机图

    初学urllib,高手勿喷... import re import urllib.request #函数:每一页抓取的30张图片 def craw(url,page): imagelist = []# ...

  10. ps -ef |grep xxx 输出的具体含义

    ps:将某个进程显示出来 -A 显示所有程序. -e 此参数的效果和指定"A"参数相同. -f 显示UID,PPIP,C与STIME栏位. grep命令是查找 中间的|是管道命令 ...