union-find算法
1.背景
《算法》一书中提到了关于算法的一些基本思想
- 优秀的算法因为能够解决实际的问题而变得更为重要;
- 高效算法的代码可以很简单;
- 理解某个实现的性能特点是一项有趣而令人满足的挑战;
- 在解决同一个问题的多种算法之间进行选择时,科学方法是一项重要工具;
- 迭代式改进能够让算法效率越来越高;
使用union-find算法解决连通性问题,所谓连通性问题就是在下图网络中可以看到有很多节点,节点与节点之间的连接对称为连通分量,要求编写程序判断网络中有多少组连通分量,随意给出两个节点要求判断这两个节点是否属于同一个分量。在连通图中有如下一些定义,假如一个节点p没有和任何其他节点相连,则此节点属于一个连通分量,如果一个节点p和节点q相连,则p-q为一个连通分量,如果p和q相连,q和r相连,则p-q-r为一个连通分量。
2.算法分析
……
3.算法实现
为了解决此问题,需要先设计一个API来封装所需要的基本操作:初始化,连接两个节点,判断包含某个节点的分量,判断两个节点是否属于同一个分量之中,并且返回所有分量的个数。
public class UF
UF(int N) 整数标示N个节点
void union(int p, int q) 在pq之间添加一条连线,标示连接pq
int find(int p) 节点p所在分量的标示符
Boolean connected(int p, int q) 如果p和q存在于同一个分量中则返回true
int count() 连通分量的个数
代码实现一:
import java.util.Scanner;
public class UF {
private int[] id; //分量的id
private int count; //分量的数量 //初始化分量id数组
public UF(int N) {
count = N;
id = new int[N];
for (int i = 0; i < N; i++) {
id[i] = i;
}
} //返回分量的数量
public int count() {
return count;
} //判断两个节点是否属于同一个分量
public boolean connected(int p, int q) {
return find(p) == find(q);
} //求节点p所属的分量id
public int find(int p) {
return id[p];
} //连接节点pq
//首先检查pq是否在同一个分量中,如果是则不做任何操作,否则要求p所在的连通分量中
//所有节点id必须相同,q所在的连通分量中所有节点id也相同但为另外的值,要将二者合
//二为一,则将q所在分量的所有节点id均变为p节点的id或相反
public void union(int p, int q) {
int pId = find(p);
int qId = find(q); if (pId == qId) {
return;
} for (int i = 0; i < id.length; i++) {
if (id[i] == qId) {
id[i] = pId;
}
}
count--;
} public static void main(String[] args) {
@SuppressWarnings("resource")
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();
UF uf = new UF(N); while (scanner.hasNext()) {
int p = scanner.nextInt();
int q = scanner.nextInt();
if (uf.connected(p, q)) {
continue;
}
uf.union(p, q);
System.out.println(p + "--" + q);
}
System.out.println(uf.count() + " components");
}
}
使用这种find和union实现可以看到,对于find操作非常快,但对于union每一对节点输入都可能需要进行对整个id数组进行遍历,对于id数组的访问时间为O(N^2),所以当输入节点很多时用这个算法来统计连通分量就不行了,此时union的时间复杂度为O(N),find的复杂度为O(1)。
代码实现二:
public int find2(int p) {
while (p != id[p]) {
p = id[p];
}
return p;
} public void union2(int p, int q) {
int pId = find2(p);
int qId = find2(q); if (pId == qId) {
return;
} id[qId] = pId;
count--;
}
使用这种find2和union2实现可以看到,对于调用到find2时,在某些情况下对于id数组访问的时间复杂度依然为O(N^2),此时find2的时间复杂度为树的高度N,union2的复杂度也为树的高度N。
代码实现三:
public class WeightedQuickUF {
private int[] id; //节点的索引
private int[] w; //每个根节点对应分量的大小
private int count; public WeightedQuickUF(int N) {
count = N;
id = new int[N];
w = new int[N];
for (int i = 0; i < N; i++) {
id[i] = i;
w[i] = 1;
}
} //返回分量的数量
public int count() {
return count;
} //判断两个节点是否属于同一个分量
public boolean connected(int p, int q) {
return find(p) == find(q);
} public int find(int p) {
while (p != id[p]) {
p = id[p];
}
return p;
} public void union(int p, int q) {
int pId = find(p);
int qId = find(q); if(pId == qId) {
return;
} if (w[pId] < w[qId]) {
id[pId] = qId;
w[qId] += w[pId];
} else {
id[qId] = pId;
w[pId] += w[qId];
}
count--;
}
}
对第二种实现做一些改进,使用加权的算法,使用加权算法保证在使用union时总是将小树的根节点连接到大树上,此时find和union的复杂度均为树的高度lgN,所以访问id数组的复杂度最坏情况为cMlgN,此时C为常数,M为连接数,N为节点数。
union-find算法的更多相关文章
- 算法与数据结构基础 - 合并查找(Union Find)
Union Find算法基础 Union Find算法用于处理集合的合并和查询问题,其定义了两个用于并查集的操作: Find: 确定元素属于哪一个子集,或判断两个元素是否属于同一子集 Union: 将 ...
- LeetCode编程训练 - 合并查找(Union Find)
Union Find算法基础 Union Find算法用于处理集合的合并和查询问题,其定义了两个用于并查集的操作: Find: 确定元素属于哪一个子集,或判断两个元素是否属于同一子集 Union: 将 ...
- 最小生成树——Kruskal(克鲁斯卡尔)算法
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 ...
- Kruscal算法求图的最小生成树
Kruscal算法求图的最小生成树 概述 和Prim算法求图的最小生成树一样,Kruscal算法求最小生成树也用到了贪心的思想,只不过前者是贪心地选择点,后者是贪心地选择边.而且在算法的实现中,我 ...
- MySQL 优化之 index merge(索引合并)
深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...
- MYSQL-联合索引
深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...
- MySQL index merge
深入理解 index merge 是使用索引进行优化的重要基础之一. [ index merge] 当where谓词中存在多个条件(或者join)涉及到多个字段,它们之间进行 AND 或者 ...
- MySQL 查询优化之 Index Merge
MySQL 查询优化之 Index Merge Index Merge Intersection 访问算法 Index Merge Union 访问算法 Index Merge Sort-Union ...
- MySQL 优化之 index_merge (索引合并)
深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...
- HNCU1323:算法2-1:集合union (线性表)
http://hncu.acmclub.com/index.php?app=problem_title&id=111&problem_id=1323 题目描述 假设利用两个线性表LA和 ...
随机推荐
- ubuntu server 多网卡
https://wenku.baidu.com/view/51fb15742f60ddccdb38a007.html
- DB中字段为null,为空,为空字符串,为空格要怎么过滤取出有效值
比如要求取出微信绑定的,没有解绑的 未绑定,指定字段为null 绑定的,指定字段为某个字符串 解绑的,有的客户用的是更新指定字段为1,有的客户更新指定字段为‘1’ 脏数据的存在,比如该字段为空字符 ...
- 深度排序与alpha混合
原文: https://blogs.msdn.microsoft.com/shawnhar/2009/02/18/depth-sorting-alpha-blended-objects/ 翻译:李现民 ...
- 快速幂模n运算
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...
- 小橙书阅读指南(十三)——连通性算法(union-find)
上一章我大概说明了什么是图论以及无向图的基础概念,本章我们要研究一种更普遍的算法——连通性算法.它属于图论的分支,也是一种抽象算法.在深入算法之前,我们先提出一个具体的问题:假设在空间中存在N个点,我 ...
- Google chrome浏览器打不开网页,显示ERR_Failed...等问题的解决方法
新装好的win7系统,打开Google浏览器,显示网页可能暂时无法连接,或者它已永久性的移动到了新地址.在网络搜索很多资料,发现解决方法如下,亲测成功. 原因,该服务依赖的TCP/IP 协议有问题. ...
- template.js 模版内调用外部JS方法
template.js 一款 JavaScript 模板引擎,简单,好用.提供一套模板语法,用户可以写一个模板区块,每次根据传入的数据,生成对应数据产生的HTML片段,渲染不同的效果.模版定义如下: ...
- English trip -- VC(情景课)5 Around Town
Around Town 城市周围 Talk about the picture 看图说话 sentences Where are you? I'm in the Meten classroom. ...
- 20170501xlVBA销售订单整理一行转多行
Sub NextSeven_CodeFrame() Application.ScreenUpdating = False Application.DisplayAlerts = False Appli ...
- 4-13 Webpacker-React.js; 用React做一个下拉表格的功能: <详解>
Rails5.1增加了Webpacker: Webpacker essentially is the decisions made by the Rails team and bundled up i ...