k-近邻算法案例分析

本案例使用最著名的”鸢尾“数据集,该数据集曾经被Fisher用在经典论文中,目前作为教科书般的数据样本预存在Scikit-learn的工具包中。

读入Iris数据集细节资料

from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris
iris = load_iris() # 查验数据规模
iris.data.shape # 查看数据说明(这是一个好习惯)
print iris.DESCR

通过上述代码对数据的查验以及数据本身的描述,我们了解到Iris数据集共有150朵鸢尾数据样本,并且均匀分布在3个不同的亚种;每个数据样本有总共4个不同的关于花瓣、花萼的形状特征所描述。由于没有制定的测试集合,因此按照惯例,我们需要对数据进行随即分割,25%的样本用于测试,其余75%的样本用于模型的训练。

由于不清楚数据集的排列是否随机,可能会有按照类别去进行依次排列,这样训练样本的不均衡的,所以我们需要分割数据,已经默认有随机采样的功能。

对Iris数据集进行分割

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.25,random_state=42)

对特征数据进行标准化

from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)

K近邻算法是非常直观的机器学习模型,我们可以发现K近邻算法没有参数训练过程,也就是说,我们没有通过任何学习算法分析训练数据,而只是根据测试样本训练数据的分布直接作出分类决策。因此,K近邻属于无参数模型中非常简单一种。

from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV def knniris():
"""
鸢尾花分类
:return: None
""" # 数据集获取和分割
lr = load_iris() x_train, x_test, y_train, y_test = train_test_split(lr.data, lr.target, test_size=0.25) # 进行标准化 std = StandardScaler() x_train = std.fit_transform(x_train)
x_test = std.transform(x_test) # estimator流程
knn = KNeighborsClassifier() # # 得出模型
# knn.fit(x_train,y_train)
#
# # 进行预测或者得出精度
# y_predict = knn.predict(x_test)
#
# # score = knn.score(x_test,y_test) # 通过网格搜索,n_neighbors为参数列表
param = {"n_neighbors": [3, 5, 7]} gs = GridSearchCV(knn, param_grid=param, cv=10) # 建立模型
gs.fit(x_train,y_train) # print(gs) # 预测数据 print(gs.score(x_test,y_test)) # 分类模型的精确率和召回率 # print("每个类别的精确率与召回率:",classification_report(y_test, y_predict,target_names=lr.target_names)) return None if __name__ == "__main__":
knniris()

 

3.2_k-近邻算法案例分析的更多相关文章

  1. 机器学习之利用KNN近邻算法预测数据

    前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定  ...

  2. 机器学习入门KNN近邻算法(一)

    1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...

  3. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  4. 【MySQL】排序原理与案例分析

    前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Group by语句,Distinct语句都会隐 ...

  5. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  6. WebLogic集群案例分析

    WebLogic集群案例分析 2012年8月,某证券交易系统(采用Weblogic中间件),由于基金业务火爆,使系统压力太大,后台服务器频繁死机时,这时工程师们紧急调试系统及恢复操作,等完成这些操作花 ...

  7. 《大型网站技术架构:核心原理与案例分析》【PDF】下载

    <大型网站技术架构:核心原理与案例分析>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062557 内容简介 本书通过梳理大型网站 ...

  8. 个人作业2:QQ音乐APP案例分析

    APP案例分析 QQ音乐 选择理由:毕竟作为QQ音乐九年的资深老用户以及音乐爱好者 第一部分 调研 1.第一次上手的体验    我算是很早期的QQ音乐的用户,用QQ音乐七八年,除了体验各方面还不错之外 ...

  9. 《深入理解Java虚拟机》-----第5章 jvm调优案例分析与实战

    案例分析 高性能硬件上的程序部署策略 例 如 ,一个15万PV/天左右的在线文档类型网站最近更换了硬件系统,新的硬件为4个CPU.16GB物理内存,操作系统为64位CentOS 5.4 , Resin ...

随机推荐

  1. 玩转ptrace (一)

    转自http://www.cnblogs.com/catch/p/3476280.html [本文翻译自这里: http://www.linuxjournal.com/article/6100?pag ...

  2. HTML图片热区map area的用法

    <area>标记主要用于图像地图,通过该标记可以在图像地图中设定作用区域(又称为热点),这样当用户的鼠标移到指定的作用区域点击时,会自动链接到预先设定好的页面.其基本语法结构如下: < ...

  3. mysql常用的聚合函数

    GROUP BY(聚合)函数本章论述了用于一组数值操作的 group (集合)函数.除非另作说明, group 函数会忽略 NULL 值. 假如你在一个不包含 ROUP BY子句的语句中使用一个 gr ...

  4. 多线程安全问题之Lock显示锁

    package com.hls.juc; import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.Reentr ...

  5. Java中的null

    null是Java中的关键字,像public.static.final.它是大小写敏感的,你不能将null写成Null或NULL,编译器将不能识别它们然后报错. Object obj = NULL; ...

  6. bzoj 4566 [Haoi2016]找相同字符——广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4566 每个后缀结尾处 ct[ ] = 1 ,按拓扑序 dp 一下就能求出 right 集合的 ...

  7. Jsp Cookie

    cookie它是用户访问Web服务器时,服务器在用户硬盘上存放的信息. 1.使用Servlet实现cookie @WebServlet("/CookieServlet") publ ...

  8. 大快DKhadoop开发环境安装常见问题与解决方案

    2018年度国内大数据公司排名50强本月初榜单发布,榜单上看到大快搜索跻身50强,再看看他们做的DKHadoop发行版,的确还是蛮厉害的吧!最起码这款DKHadoop用起来确实在易用性方面要更好!Dk ...

  9. 抓包软件Packet Sniffer的使用

    1. 要用专门的一块zigbee插到底板上,仿真器连到CC Debug接口. 2. 打开软件,按下仿真器的复位键,可以识别到设备. 3. 进行抓包(抓到的是网络中其他节点的信息)

  10. SQL Server-- 存储过程中错误处理

    一.存储过程中使用事务的简单语法 在存储过程中使用事务时非常重要的,使用数据可以保持数据的关联完整性,在Sql server存储过程中使用事务也很简单,用一个例子来说明它的语法格式: Create P ...