Hadoop程序基础模板
分布式编程相对复杂,而Hadoop本身蒙上大数据、云计算等各种面纱,让很多初学者望而却步。可事实上,Hadoop是一个很易用的分布式编程框架,经过良好封装屏蔽了很多分布式环境下的复杂问题,因此,对普通开发者来说很容易,容易到可以照葫芦画瓢。
大多数Hadoop程序的编写可以简单的依赖于一个模板及其变种。当编写一个新的MapReduce程序时,我们通常采用一个现有的MapReduce程序,通过修改达到我们希望的功能就行了。对于写大部分的Hadoop程序来说几乎就是照葫芦画瓢。这个瓢到底是什么样子呢?还是和小讲一起看看吧。
使用 Java 语言编写 MapReduce 非常方便,因为 Hadoop 的 API 提供了 Mapper 和 Reducer 抽象类,对开发人员来说,只需要继承这两个抽象类,然后实现抽象类里面的方法就可以了。
有一份CSV格式专利引用数据,超过1600万行,某几行如下:
"CITING(引用)","CITED(被引用)"
3858241,956203
3858241,1324234
3858241,3398406
3858242,1515701
3858242,3319261
3858242,3707004
3858243,1324234
2858244,1515701
...
对每个专利,我们希望找到引用它的专利并合并,输出如下:
1324234 3858243,3858241
1515701 2858244,3858242
3319261 3858242
3398406 3858241
3707004 3858242
956203 3858241
...
下边的程序就实现了一个这样的功能。很强大的功能,代码就这么少,没想到吧???
下面是一个典型的Hadoop程序模板
package com.dajiangtai.hadoop.junior; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* Hadoop程序基础模板
*/
public class HadoopTpl extends Configured implements Tool { public static class MapClass extends Mapper< Text,Text,Text,Text> { public void map(Text key, Text value, Context context) throws IOException, InterruptedException { context.write(value, key); }
} public static class ReduceClass extends Reducer< Text, Text, Text, Text> {
public void reduce(Text key, Iterable< Text> values, Context context) throws IOException, InterruptedException {
String csv = "";
for(Text val:values) {
if(csv.length() > 0)
csv += ",";
csv += val.toString();
} context.write(key, new Text(csv));
}
} @Override
public int run(String[] args) throws Exception {
Configuration conf = getConf(); //读取配置文件
conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", ","); Job job = new Job(conf, "HadoopTpl");//新建一个任务
job.setJarByClass(HadoopTpl.class);//主类 Path in = new Path(args[0]);
Path out = new Path(args[1]); FileSystem hdfs = out.getFileSystem(conf);
if (hdfs.isDirectory(out)) {
hdfs.delete(out, true);
} FileInputFormat.setInputPaths(job, in);//文件输入
FileOutputFormat.setOutputPath(job, out);//文件输出 job.setMapperClass(MapClass.class);//Mapper
job.setReducerClass(ReduceClass.class);//Reducer job.setInputFormatClass(KeyValueTextInputFormat.class);//文件输入格式
job.setOutputFormatClass(TextOutputFormat.class);//文件输出格式
job.setOutputKeyClass(Text.class);//设置作业输出值 Key 的类
job.setOutputValueClass(Text.class);//设置作业输出值 Value 的类 System.exit(job.waitForCompletion(true)?0:1);//等待作业完成退出
return 0;
} /**
* @param args 输入文件、输出路径,可在Eclipse的Run Configurations中配Arguments如:
* hdfs://single.hadoop.dajiangtai.com:9000/junior/patent.txt
* hdfs://single.hadoop.dajiangtai.com:9000/junior/patent-out/
*/
public static void main(String[] args) {
try {
int res = ToolRunner.run(new Configuration(), new HadoopTpl(), args);
System.exit(res);
} catch (Exception e) {
e.printStackTrace();
}
}
}
可以想像,一份超过1600万的数据,实现这样一个功能,如果我们自己写算法处理,效率和资源耗费很难想像。可使用Hadoop处理起来就是这么简单。是不是很强大?加紧学习吧,少年!
Hadoop程序基础模板的更多相关文章
- hadoop rpc基础
第一部分: hadoop rpc基础 RPC,远程程序调用,分布式计算中C/S模型的一个应用实例. 同其他RPC框架一样,Hadoop分为四个部分: 序列化层:支持多种框架实现序列化与反序列化 函数调 ...
- IntelliJ IDEA + Maven环境编写第一个hadoop程序
1. 新建IntelliJ下的maven项目 点击File->New->Project,在弹出的对话框中选择Maven,JDK选择你自己安装的版本,点击Next 2. 填写Maven的Gr ...
- 运行第一个Hadoop程序,WordCount
系统: Ubuntu14.04 Hadoop版本: 2.7.2 参照http://www.cnblogs.com/taichu/p/5264185.html中的分享,来学习运行第一个hadoop程序. ...
- Windows Phone 8初学者开发—第10部分:数据绑定应用程序和透视应用程序项目模板简介
原文 Windows Phone 8初学者开发—第10部分:数据绑定应用程序和透视应用程序项目模板简介 原文地址: http://channel9.msdn.com/Series/Windows-Ph ...
- 一个完整的hadoop程序开发过程
目的 说明hadoop程序开发过程 前提条件 ubuntu或同类OS java1.6.0_45 eclipse-indigo hadoop-0.20.2 hadoop-0.20.2-eclipse-p ...
- 小程序基础知识点讲解-WXML + WXSS + JS,生命周期
小程序基础 小程序官方地址,小程序开发者工具,点击此处下载.在微信小程序中有一个配置文件project.config.json,此文件可以让开发者在不同设备中进行开发. 微信小程序共支持5种文件,wx ...
- Hadoop框架基础(三)
** Hadoop框架基础(三) 上一节我们使用eclipse运行展示了hdfs系统中的某个文件数据,这一节我们简析一下离线计算框架MapReduce,以及通过eclipse来编写关于MapReduc ...
- Hadoop框架基础(一)
** Hadoop框架基础(一) 学习一个新的东西,传统而言呢,总喜欢漫无目的的扯来扯去,比如扯扯发展史,扯扯作者是谁,而我认为这些东西对于刚开始接触,并以开发为目的学者是没有什么帮助的,反而 ...
- 【Hadoop离线基础总结】oozie的安装部署与使用
目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...
随机推荐
- Eclipse 关闭项目
Eclipse 关闭项目 为什么要关闭项目? Eclipse 工作空间包含了多个项目.一个项目可以是关闭或开启状态. 项目打开过多影响有: 消耗内存 占用编译时间:在删除项目.class 文件(Cle ...
- /dev/null简介
在类Unix系统中,/dev/null,或称空设备,是一个特殊的设备文件,它丢弃一切写入其中的数据(但报告写入操作成功),读取它则会立即得到一个EOF[1]. 在程序员行话,尤其是Unix行话中,/d ...
- 如何获取继承中泛型T的类型
@SuppressWarnings("unchecked") public void testT() { clazz = (Class<T>)( (Parameteri ...
- box-shadow阴影效果
.shadowBox{ -moz-box-shadow:5px 5px 5px #A9A9A9; -webkit-box-shadow:5px 5px 5px #A9A9A9; box-shadow: ...
- python基础里的那些为什么?
一.执行python脚本的两种方式? 直接在解释器里编写并在解释器里执行 文件编写,并在终端通过 python 路径 这种方式执行 好,我们就以输出hello world这个例子来比较两种方式的不同 ...
- 【题解】CF611H New Year and Forgotten Tree
[题解]CF611H New Year and Forgotten Tree 神题了... 题目描述 给定你一棵树,可是每个节点上的编号看不清了,只能辨别它的长度.现在用问号的个数代表每个节点编号那个 ...
- recorder.js
(function (f) { if (typeof exports === "object" && typeof module !== "undefin ...
- postman 编码加密汇总
1.MD5加密 /*加密方式:将 请求头的user-agent内容+请求方式+当前时间+(Base64)请求body中的stacode参数 拼接后得到的字符串进行MD5加密*/ //1.获取reque ...
- SpringBoot连接PostgreSQL
这个 org.postgresql.jdbc.PgConnection.createClob() 方法尚未被实作 application.properties spring.datasource.pl ...
- OFMessageDecoder 分析
OFMessageDecoder 继承了抽象类 FrameDecoder.FrameDecoder 会将接收到的ChannelBuffers 转换成有意义的 frame 对象.在基于流的传输 ...