我们可以先DP预处理出W[I]代表买I的东西,每种钞票的个数

不做限制的方案数,那么对于每一组数据的限制,我们可以知道

W[S-C[I]*(D[I]+1)]C为面值,D为数量,这个代表第I种钞票一定

超了的方案数,那么假设我们用二进制来表示对于四种钞票的限制情况

0000表示都不限制,1000代表第一种必须用超,其余没有限制

我们要求的是都限制的请款

那么根据容斥原理,我们可以知道答案是都不限制的-有奇数个1的情况+偶数个1的情况

dfs处理16种情况就好了

/**************************************************************
    Problem:
    User: BLADEVIL
    Language: Pascal
    Result: Accepted
    Time: ms
    Memory: kb
****************************************************************/
 
//By BLADEVIL
var
    i, j                        :longint;
    c, d                        :array[..] of longint;
    t, s                        :longint;
    w                           :array[..] of int64;
    ans                         :int64;
     
procedure dfs(now,sum,flag:longint);
begin
    if sum< then exit;
    if now= then
    begin
        if flag= then
            ans:=ans+w[sum] else
            ans:=ans-w[sum];
        exit;
    end;
    dfs(now+,sum,flag);
    dfs(now+,sum-c[now]*(d[now]+),flag xor );
end;
     
begin
    for i:= to do read(c[i]);
    read(t);
    w[]:=;
    for i:= to do
        for j:=c[i] to do w[j]:=w[j]+w[j-c[i]];
     
    for i:= to t do
    begin
        for j:= to do read(d[j]);
        read(s);
        ans:=;
        dfs(,s,);
        writeln(ans);
    end;
end.

bzoj 1042 DP+容斥原理的更多相关文章

  1. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  2. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  3. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  4. 【bzoj2560】串珠子 状压dp+容斥原理

    题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...

  5. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  6. 【bzoj2339】[HNOI2011]卡农 dp+容斥原理

    题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...

  7. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  8. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  9. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

随机推荐

  1. 【APUE】Chapter1 UNIX System Overview

    这章内容就是“provides a whirlwind tour of the UNIX System from a programmer's perspective”. 其实在看这章内容的时候,已经 ...

  2. SVN 使用时的小错误

    在使用SVN的时候总是出现一些小问题,今天又出现了一个,诶,分享一下吧!  Error:(个人文件夹名http://www.qdjhu.com/anli_xq/f_wancheng.php)  is ...

  3. 2.Linux文件和目录

    1. 目录和路径 linux下比较特殊的目录: . 代表此层目录 .. 代表上一层目录 - 代表前一个工作目录 ~ 代表『目前使用者身份』所在的home目录 ~account 代表 account 这 ...

  4. Zabbix_agentd 启动报错

    C:\zabbix>c:\Zabbix\zabbix_agentd.exe -i -c c:\Zabbix\zabbix_agentd.conf zabbix_agentd.exe [1144] ...

  5. 《python机器学习—预测分析核心算法》:理解数据

    参见原书2.1-2.2节 新数据集就像一个包装好的礼物,它充满了承诺和希望! 但是直到你打开前,它都保持神秘! 一.基础问题的架构.术语,机器学习数据集的特性 通常,行代表实例,列代表属性特征 属性, ...

  6. 阿里的100TB Sort Benchmark排序比雅虎快了一倍还多,我的看法

    如果我的判断正确,它们使用的软件和算法应该是HADOOP,MAP/REDUCE,或者类似的技术方案.如果这些条件一样,影响计算结果的还有三个因素: 1.CPU的数量和CPU的处理能力     CPU的 ...

  7. python安装Django

    现在有很多建站系统,很多都是基于php的,比如WordPress. 而Django 是老牌基于Python的CMS框架了,一直听说很强大,甚至曾经很红的Ruby On Rails都参考了它的很多概念, ...

  8. HDU 3696 Farm Game(拓扑+DP)(2010 Asia Fuzhou Regional Contest)

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  9. android http

    在Android开发中,Android SDK附带了Apache的HttpClient,它是一个完善的客户端.它提供了对HTTP协议的全面支持,可以使用HttpClient的对象来执行HTTP GET ...

  10. homework for Java

    public class Dog { private String name; private String color; private int age; public Dog(String nam ...