BZOJ 4827

$$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + 2c * x_i - 2c * y_i) = \sum_{i = 1}^{n}x_i^2 + \sum_{i = 1}^{n}y_i^2 + nc^2 + (2\sum_{i = 1}^{n}(x_i -y_i))c - 2 * \sum_{i = 1}^{n}x_iy_i$$

发现第一项和第二项是一个定值,而第三项和第四项构成了一个开口向上的二次函数,当$c$最靠近对称轴的时候最小,唯一要处理的是最后一项$\sum_{i = 1}^{n}x_iy_i$。

把$y$序列翻转一下,变成$\sum_{i = 1}^{n}x_iy_{n - i + 1}$,这是一个卷积的形式,可以使用$NTT$来加速。

而题目中要求可以旋转一个序列,那么把$x$序列倍长然后当作多项式和翻转后的$y$序列乘起来。

这一项就是在乘起来之后的第$n + 1$项到$2 * n$项中取个最大值。

时间复杂度$O(nlogn)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll P = 998244353LL;
const ll inf = 1LL << ; int n, m, lim = , pos[N];
ll a[N], b[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for (; ch > '' || ch < ''; ch = getchar())
if (ch == '-') op = -;
for (; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} template <typename T>
inline void chkMin(T &x, T y) {
if(y < x) x = y;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void prework() {
int l = ;
for (; lim <= * n; ++l, lim <<= );
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ));
if(opt == -) wn = fpow(wn, P - );
for (int len = i << , j = ; j < lim; j += len) {
ll w = 1LL;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = w * c[j + k + i] % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
} if (opt == -) {
ll inv = fpow(lim, P - );
for (int i = ; i < lim; i++)
c[i] = c[i] * inv % P;
}
} int main() {
read(n), read(m);
ll suma = 0LL, sqra = 0LL, sumb = 0LL, sqrb = 0LL;
for (int i = ; i < n; i++) {
read(a[i]);
suma += a[i], sqra += a[i] * a[i];
}
for (int i = ; i < n; i++) {
read(b[i]);
sumb += b[i], sqrb += b[i] * b[i];
} for (int i = ; i < n; i++) a[i + n] = a[i];
for (int i = ; i < (n / ); i++) swap(b[i], b[n - i - ]); prework();
ntt(a, ), ntt(b, );
for (int i = ; i < lim; i++) a[i] = a[i] * b[i] % P;
ntt(a, -); /* for (int i = 0; i < lim; i++)
printf("%lld%c", a[i], i == (lim - 1) ? '\n' : ' '); */ ll ans = inf;
for (int i = ; i < n; i++) {
for (int j = -m; j <= m; j++) {
ll res = sqra + sqrb + 1LL * n * j * j;
res += 2LL * j * (suma - sumb) - 2LL * a[i + n - ];
chkMin(ans, res);
}
} printf("%lld\n", ans);
return ;
}

Luogu 3723 [AH2017/HNOI2017]礼物的更多相关文章

  1. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  2. LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)

    传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...

  3. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  4. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  5. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  6. BZOJ4827:[AH2017/HNOI2017]礼物——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...

  7. [AH2017/HNOI2017] 礼物 解题报告 (FFT)

    题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自 ...

  8. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  9. luogu P3726 [AH2017/HNOI2017]抛硬币

    传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...

随机推荐

  1. Visual Studio 2013 帮助文档 安装以及如何直接打开

    1.在线安装VS2013的MSDN帮助文档 在利用VS2013集成开发环境(IDE)开发程序代码时会经常用到帮助文档,但默认情况下在帮助文档是在线以网页的形式呈现的,当我们不方便上网时就不能够查看帮助 ...

  2. block的基本使用

    block用来保存一段代码 block的标志:^ block跟函数很像: 1. 可以保存代码 2. 有返回值 3. 有形参 4. 调用方式一样 定义bolock变量 例1: void (^myBloc ...

  3. (转)移动端开发总结(一)视口viewport总结

    转载链接:移动端开发中,关于适配问题的一点总结(一) 视口 布局视口layout viewport 视觉视口visual viewport 理想视口 缩放 一个重大区别 最小缩放 和最大缩放 分辨率 ...

  4. 【Swift 】- 闭包

    闭包是自包含带函数代码块,可以在代码中被传递和使用.我觉得可以这样理解:闭包相当于C#中的lambda表达式: 全局函数和嵌套函数,实际也是特殊的闭包. 通常闭包是以下三种形式: a,全局函数是一个有 ...

  5. ArcGIS破解配置及oracle文件配置

    1.破解配置 2.oracle文件配置

  6. Linux常用命令(个人使用频率较高)

    1,日志查看 tail(cat) -f|grep ERROR(任意字符) filepath (任意行数) -f|grep ERROR(任意字符) filepath 2,查看目录&授权 file ...

  7. spring-aop + memcached 的简单实现

    一般情况下,java程序取一条数据是直接从数据库中去取,当数据库达到一定的连接数时,就会处于排队等待状态,某些在一定时间内不会发生变化的数据,完全没必要每次都从数据库中去取,使用spring-aop ...

  8. 嵌入式媒体处理(EMP)中的编码和解码

    我知道,我对与电子有关的所有事情都很着迷,但不论从哪个角度看,今天的现场可编程门阵列(FPGA),都显得“鹤立鸡群”,真是非常棒的器件.如果在这个智能时代,在这个领域,想拥有一技之长的你还没有关注FP ...

  9. Oracle 12.1.0.2 对JSON的支持

    Oracle 12.1.0.2版本有一个新功能就是可以存储.查询.索引JSON数据格式,而且也实现了使用SQL语句来解析JSON,非常方便.JSON数据在数据库中以VARCHAR2, CLOB或者BL ...

  10. 【转】Jmeter MySQL数据库性能测试

    1.首先准备M一SQL数据,新建一个数据库及测试用的表,插入1条数据 2.打开Jmeter,新建线程组,设置多少用户,循环几次随意 3.在线程组下新增JDBC配置元件,通过配置使得Jmeter能够连上 ...