Luogu 3594 [POI2015]WIL-Wilcze doły
简单题。
考虑没有修改数字的条件的限制,我们直接用双指针扫描就可以计算出答案了。
然后考虑加入修改数字的条件,只要用单调队列维护出当前两个指针表示的区间中长度为$d$的一段区间的最大值,用总和减掉这个最大值更新答案即可。
时间复杂度$O(n)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e6 + ; int n, d, q[N];
ll lim, a[N], sum[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} int main() {
read(n), read(lim), read(d);
for(int i = ; i <= n; i++) {
read(a[i]);
sum[i] = sum[i - ] + a[i];
} int l = , r = , last = , ans = d;
for(int i = d; i <= n; i++) {
for(; l <= r && sum[i] - sum[i - d] > sum[q[r]] - sum[q[r] - d]; --r);
q[++r] = i;
for(; l <= r && q[l] - d < last; ++l);
for(; l <= r && sum[i] - sum[last] - sum[q[l]] + sum[q[l] - d] > lim; ) {
++last;
for(; l <= r && q[l] - d < last; ++l);
}
chkMax(ans, i - last);
} printf("%d\n", ans);
return ;
}
Luogu 3594 [POI2015]WIL-Wilcze doły的更多相关文章
- BZOJ 4385: [POI2015]Wilcze doły
4385: [POI2015]Wilcze doły Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 648 Solved: 263[Submit][ ...
- [POI2015]Wilcze doły
[POI2015]Wilcze doły 题目大意: 给定一个长度为\(n(n\le2\times10^6)\)的数列\(A(1\le A_i\le10^9)\),可以从中选取不超过\(d\)个连续数 ...
- 【BZOJ4385】[POI2015]Wilcze doły 单调栈+双指针法
[BZOJ4385][POI2015]Wilcze doły Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段 ...
- luogu P3592 [POI2015]MYJ
题目链接 luogu P3592 [POI2015]MYJ 题解 区间dp 设f[l][r][k]表示区间l到r内最小值>=k的最大收益 枚举为k的位置p,那么包含p的区间答案全部是k 设h[i ...
- BZOJ 4385 洛谷3594 POI2015 WIL-Wilcze doły
[题解] 手残写错调了好久QAQ...... 洛谷的数据似乎比较水.. n个正整数!!这很重要 这道题是个类似two pointer的思想,外加一个单调队列维护当前区间内长度为d的子序列中元素之和的最 ...
- BZOJ4385 : [POI2015]Wilcze doły
求出前缀和$s$,设$f[i]=s[i+d-1]-s[i-1]$. 从左到右枚举的右端点$i$,左端点$j$满足单调性,若$s[i]-s[j-1]-\max(区间内最大的f)\leq p$,则可行. ...
- BZOJ4385[POI2015]Wilcze doły——单调队列+双指针
题目描述 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. 输入 第一行包含三个整数n,p ...
- bzoj 4385: [POI2015]Wilcze doły【单调栈】
对于每个i,以它为左端点的最优右端点一定是单增的,所以用单调栈维护 具体的,单调栈里放的是和单调的长为d的子段,然后枚举右端点,如果这段的和-当前长为d子段最大的和大于p的话,左端点右移同时注意单调栈 ...
- 【bzoj4385】[POI2015]Wilcze doły
单调队列扫描,记录当前区间长度为d的一段的和的最大值,和当前区间和. #include<algorithm> #include<iostream> #include<cs ...
随机推荐
- 剑指offer-第五章优化时间和空间效率(数组中的逆序对的总数)
题目:在数组中如果两个数字的前面的数比后面的数大,则称为一对逆序对.输入一个数组求出数组中逆序对的总数. 以空间换时间:思路:借助一个辅助数组,将原来的数组复制到该数组中.然后将该数组分成子数组,然后 ...
- C语言词法分析:C#源码
今天继续研究代码解析的算法 这个是算法流程图 有图解可能更直观一点: 以下是c#源码: 1using System; 2using System.IO; 3using System.Tex ...
- iOS侧滑返回到隐藏导航栏的VC,导航栏会闪现一次
VCA:是一个隐藏导航栏的页面:VCA在ViewWillAppear生命周期函数中设置导航栏隐藏: //隐藏导航栏 [self.navigationController setNavigationBa ...
- Oracle创建实例
1.打开database configuration assistant 2.下一步 3.下一步 4.完成 5.添加完密码后,点击关闭.
- Linux下搭建 NFS
一.NFS简介 NFS是Network File System的缩写,即网络文件系统.一种使用于分散式文件协定,有SUN公司开发.功能是通过网络让不同的机器.不同的操作系统能够分享个人数据,让应用程序 ...
- 对象的克隆,Dozer的使用
现在有个复杂对象bean需要在赋值后在另一个地方用,想通过复制的方式拿到这个对象.首选是深度克隆,虽然发现该对象的父类已经实现了Cloneable接口,但父类是通过jar包引入的,而且在clone方法 ...
- (转)winform下UPD通信的简单应用
本文转载自:http://blog.csdn.net/wanlong360599336/article/details/7557046 先看效果图: 使用UDP的好处就是不需要三次握手,但是缺点就是存 ...
- 分布式缓存系统 Memcached 状态机之SET、GET命令
首先对状态机中的各种状态做个简单总结,具体可见状态转换示意图: 1.listening:这个状态是主线程的默认状态,它只有这一个状态:负责监听socket,接收客户连接,将连接socket派发给工作线 ...
- Spring Batch介绍
简介 SpringBatch 是一个大数据量的并行处理框架.通常用于数据的离线迁移,和数据处理,⽀持事务.并发.流程.监控.纵向和横向扩展,提供统⼀的接⼝管理和任务管理;SpringBatch是Spr ...
- 2012_p1 质因数分解 (prime.cpp/c/pas)
2012_p1 质因数分解 (prime.cpp/c/pas) 时间限制: 1 Sec 内存限制: 128 MB提交: 80 解决: 27[提交][状态][讨论版][命题人:外部导入] 题目描述 ...