Check the difficulty of problems
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 4748   Accepted: 2078

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 

1. All of the teams solve at least one problem. 

2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems. 



Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem. 



Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you
calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems? 

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines,
the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

Source

POJ Monthly,鲁小石

解题思路:

这道题太无语了...特别不好理解...... 概率,概率,概率......

题意为 有T个队參加ACM比赛。一共同拥有M道题,问全部的队都至少做出一道题且冠军队做出的题目不能少于N道的概率。

dp[1010][32][32];//dp[i][j][k]表示第i个队前j道题中做出k道

p[1010][32];//p[i][j] 表示第i个队做出第j道题的概率

s[1010][32];//s[i][j]表示第i各队做出的题目小于等于j道的概率

转载于:http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html

设dp[i][j][k]表示第i个队在前j道题中解出k道的概率

则:

dp[i][j][k]=dp[i][j-1][k-1]*p[j][k]+dp[i][j-1][k]*(1-p[j][k]);

先初始化算出dp[i][0][0]和dp[i][j][0];

设s[i][k]表示第i队做出的题小于等于k的概率

则s[i][k]=dp[i][M][0]+dp[i][M][1]+``````+dp[i][M][k];





则每一个队至少做出一道题概率为P1=(1-s[1][0])*(1-s[2][0])*```(1-s[T][0]);

每一个队做出的题数都在1~N-1的概率为P2=(s[1][N-1]-s[1][0])*(s[2][N-1]-s[2][0])*```(s[T][N-1]-s[T][0]);





最后的答案就是P1-P2

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
double dp[1010][32][32];//dp[i][j][k]表示第i个队前j道题中做出k道
double p[1010][32];//p[i][j] 表示第i个队做出第j道题的概率
double s[1010][32];//s[i][j]表示第i各队做出的题目小于等于j道的概率
int m,n,t; int main()
{
while(scanf("%d%d%d",&m,&t,&n)!=EOF&&(m||t||n))
{
for(int i=1;i<=t;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&p[i][j]); for(int i=1;i<=t;i++)
{
dp[i][0][0]=1;
for(int j=1;j<=m;j++)
dp[i][j][0]=dp[i][j-1][0]*(1-p[i][j]);//第i个队前j道题目都做不出来的概率 for(int j=1;j<=m;j++)
for(int k=1;k<=j;k++)
dp[i][j][k]=dp[i][j-1][k-1]*p[i][j]+dp[i][j-1][k]*(1-p[i][j]);
//第i个队前j道题做出k道的概率等于前j-1道题做出k-1道,第j道做出来加上前j-1道做出k道,第j道没做出来的概率和 s[i][0]=dp[i][m][0];
for(int j=1;j<=m;j++)
s[i][j]=s[i][j-1]+dp[i][m][j];//依据上面的s数组求法可得递推公式
}
double p1=1,p2=1;
for(int i=1;i<=t;i++)
{
p1*=(1-s[i][0]);//全部的队至少做出一题的概率
p2*=(s[i][n-1]-s[i][0]);//全部的队都做出来1到n-1道题
}
printf("%.3lf\n",p1-p2);
}
return 0;
}

[ACM] POJ 2151 Check the difficulty of problems (概率+DP)的更多相关文章

  1. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  2. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  3. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

  4. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  5. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  6. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  7. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  8. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

  9. POJ2157 Check the difficulty of problems 概率DP

    http://poj.org/problem?id=2151   题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...

随机推荐

  1. servlet(3) - servlet知识点 - 小易Java笔记

    1.servlet的生命周期 (1)容器最终要调用service方法为客户进行服务.(此处“容器”指java运行的环境,tomcat是jsp/servlet的容器) ==> 在内存中一个Serv ...

  2. 【 Linux 】Keepalived实现双主模型高可用集群

    要求:    1. 两台web服务器安装wordpress,数据库通过nfs共享    2. 使用keepalived实现双主模型 环境:    主机:        系统:CentOS6.7 x64 ...

  3. 根据流程实例ID获取当前任务

    JAVA: Task task = this.processEngine.getTaskService().createTaskQuery().processInstanceId(“132501”). ...

  4. 常用的LUA片段

    生成TS的办法 local t=ngx.now(); local n=os.date(,); n=n..-string.len(n)); ngx.say(n); 产生101至200的所有素数 func ...

  5. React--基础学习混搭

    最近学习一下React,通过  阮一峰<React 入门实例教程> .React 入门教程.菜鸟教程--React 这三个学习基础使用,接下来看慕课网的三个教学视频. React是什么我也 ...

  6. selenium 难定位元素,时间插件,下拉框定位,string包含,定位列表中的一个,技巧

    关于frame: 如果网页存在iframe的话,传统的定位有时候找不到元素,需要切换frame: # 切换到leftFrame定位“测井设计” driver.switch_to_frame(" ...

  7. POJ 3984 迷宫问题【BFS/路径记录/手写队列】

    迷宫问题 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 31428 Accepted: 18000 Description 定义 ...

  8. CSU 1328 近似回文词【最长回文字符串(三种方法)】

    输入一行文本,输出最长近似回文词连续子串.所谓近似回文词是指满足以下条件的字符串: 1. S以字母开头,字母结尾 2. a(S)和b(S)最多有2k个位置不同,其中a(S)是S删除所有非字母字符并且把 ...

  9. 训练指南 UVALive - 3989(稳定婚姻问题)

    ayout: post title: 训练指南 UVALive - 3989(稳定婚姻问题) author: "luowentaoaa" catalog: true mathjax ...

  10. 传统路径导出 VS 直接路径导出(oracle exp direct=y)

    Oracle 传统的Export与Import依旧被保留到11g,而且9i与10g有很多依旧使用Export与Import方式进行备份与恢复的企业.从Oracle 7.3开始,传统的exp导出程序提供 ...