Fast Matrix Operations UVA - 11992 线段树
题意翻译
有一个r行c列的全0矩阵,有以下三种操作。
1 X1 Y1 X2 Y2 v 子矩阵(X1,Y1,X2,Y2)的元素加v
2 X1 Y1 X2 Y2 v 子矩阵(X1,Y1,X2,Y2)的元素变为v
3 X1 Y1 X2 Y2 查询子矩阵(X1,Y1,X2,Y2)的和,最大值,最小值
子矩阵(X1,Y1,X2,Y2)满足X1<=X<=X2 Y1<=Y<=Y2的所有元素(X1,Y2)。
输入保证和不超过10^9
感谢@Himself65 提供的翻译
题目描述

输入输出格式
输入格式:

输出格式:

输入输出样例
复制
4 4 8
1 1 2 4 4 5
3 2 1 4 4
1 1 1 3 4 2
3 1 2 4 4
3 1 1 3 4
2 2 1 4 4 2
3 1 2 4 4
1 1 1 4 3 3
45 0 5
78 5 7
69 2 7
39 2 7
注意setv和addv的优先级,当有setv时,addv就不应该再有影响;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int sum[maxn], minn[maxn], maxx[maxn], ls[maxn], rs[maxn], setv[maxn], addv[maxn];
int tt, rt;
void init() {
tt = rt = 1; mclr(setv, -1); ms(addv);
ms(sum); ms(minn); ms(maxx); ms(ls); ms(rs);
}
void pushup(int o) {
sum[o] = sum[ls[o]] + sum[rs[o]];
minn[o] = min(minn[ls[o]], minn[rs[o]]);
maxx[o] = max(maxx[ls[o]], maxx[rs[o]]);
}
void pushdown(int o,int l,int r) {
if (setv[o]!=-1) {
int mid = (l + r) >> 1;
if (!ls[o])ls[o] = ++tt; if (!rs[o])rs[o] = ++tt;
sum[ls[o]] = setv[o] * (mid - l + 1);
sum[rs[o]] = setv[o] * (r - mid);
minn[ls[o]] = minn[rs[o]] = maxx[ls[o]] = maxx[rs[o]] = setv[o];
setv[ls[o]] = setv[o]; setv[rs[o]] = setv[o]; setv[o] = -1; addv[ls[o]] = addv[rs[o]] = 0;
}
if (addv[o]) {
int mid = (l + r) >> 1;
if (!ls[o])ls[o] = ++tt; if (!rs[o])rs[o] = ++tt;
sum[ls[o]] += addv[o] * (mid - l + 1); sum[rs[o]] += addv[o] * (r - mid);
maxx[ls[o]] += addv[o]; maxx[rs[o]] += addv[o];
minn[ls[o]] += addv[o]; minn[rs[o]] += addv[o];
addv[ls[o]] += addv[o]; addv[rs[o]] += addv[o];
addv[o] = 0;
}
}
void upd(int &o, int L, int R, int l, int r, int opt,int val) {
if (!o) {
o = ++tt;
}
if (L <= l && r <= R) {
if (opt == 1) {
sum[o] += (r - l + 1)*val;
maxx[o] += val; minn[o] += val;
addv[o] += val;
}
else {
sum[o] = (r - l + 1)*val;
maxx[o] = val; minn[o] = val;
setv[o] = val; addv[o] = 0;
}
return;
}
pushdown(o, l, r);
int mid = (l + r) >> 1;
if (L <= mid)upd(ls[o], L, R, l, mid, opt, val);
if (mid < R)upd(rs[o], L, R, mid + 1, r, opt, val);
pushup(o);
}
int Sum(int L, int R, int l, int r, int o) {
if (L <= l && r <= R) {
return sum[o];
}
pushdown(o, l, r);
int mid = (l + r) >> 1;
int ans = 0;
if (L <= mid)ans += Sum(L, R, l, mid, ls[o]);
if (mid < R)ans += Sum(L, R, mid + 1, r, rs[o]);
return ans;
}
int Max(int L, int R, int l, int r, int o) {
if (L <= l && r <= R)return maxx[o];
pushdown(o, l, r);
int mid = (l + r) >> 1;
int MAX = -inf;
if (L <= mid)MAX = max(MAX, Max(L, R, l, mid, ls[o]));
if (mid < R)MAX = max(MAX, Max(L, R, mid + 1, r, rs[o]));
return MAX;
}
int Min(int L, int R, int l, int r, int o) {
if (L <= l && r <= R)return minn[o];
pushdown(o, l, r);
int mid = (l + r) >> 1;
int MIN = inf;
if (L <= mid)MIN = min(MIN, Min(L, R, l, mid, ls[o]));
if (mid < R)MIN = min(MIN, Min(L, R, mid + 1, r, rs[o]));
return MIN;
}
}t[22]; int main()
{
// ios::sync_with_stdio(0);
int r, c, m;
while (cin >> r >> c >> m) {
for (int i = 1; i <= r; i++)t[i].init();
while (m--) {
int opt = rd();
if (opt == 1) {
int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd(), v = rd();
for (int i = X1; i <= X2; i++)t[i].upd(t[i].rt, Y1, Y2, 1, c, 1, v);
}
else if (opt == 2) {
int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd(), v = rd();
for (int i = X1; i <= X2; i++)t[i].upd(t[i].rt, Y1, Y2, 1, c, 2, v);
}
else {
int ans = 0, ans1 = inf, ans2 = -inf;
int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd();
for (int i = X1; i <= X2; i++) {
ans += t[i].Sum(Y1, Y2, 1, c, t[i].rt);
ans1 = min(ans1, t[i].Min(Y1, Y2, 1, c, t[i].rt));
ans2 = max(ans2, t[i].Max(Y1, Y2, 1, c, t[i].rt));
}
printf("%d %d %d\n", ans, ans1, ans2);
}
}
}
return 0;
}
Fast Matrix Operations UVA - 11992 线段树的更多相关文章
- Fast Matrix Operations(UVA)11992
UVA 11992 - Fast Matrix Operations 给定一个r*c(r<=20,r*c<=1e6)的矩阵,其元素都是0,现在对其子矩阵进行操作. 1 x1 y1 x2 y ...
- UVA 11992 Fast Matrix Operations (二维线段树)
解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...
- UVa 11992 (线段树 区间修改) Fast Matrix Operations
比较综合的一道题目. 二维的线段树,支持区间的add和set操作,然后询问子矩阵的sum,min,max 写完这道题也是醉醉哒,代码仓库里还有一份代码就是在query的过程中也pushdown向下传递 ...
- UVA 11992 线段树
input r c m r<=20,1<=m<=20000 m行操作 1 x1 y1 x2 y2 v add v 2 x1 y1 x2 y2 v s ...
- UVA 11992 ——线段树(区间修改)
解题思路: 将矩阵每一行建立一棵线段树,进而变成一维问题求解.注意数组要开 4*N 代码如下: #include <iostream> #include <cstdio> #i ...
- uva 11992 Fast Matrix Operations 线段树模板
注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...
- UVA 11992 - Fast Matrix Operations(段树)
UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...
- UVA11992 - Fast Matrix Operations(段树部分的变化)
UVA11992 - Fast Matrix Operations(线段树区间改动) 题目链接 题目大意:给你个r*c的矩阵,初始化为0. 然后给你三种操作: 1 x1, y1, x2, y2, v ...
- Fast Matrix Operations
A Simple Problem with Integers 每次将区间向下更新,或是用之前的方法,统计当前节点到父节点处的覆盖数目. #include <cstdio> #include ...
随机推荐
- Glade编程
一.简介 如果有一种软件能将图形界面的设计及时地展现于开发人员的面前,而且在设计完后能直接看到界面的外观效果,这样就使程序员的主要精力集中于应用程序核心功能的开发上,这就是所谓的可视化编程思想. ...
- Java中迭代Map的方法
Map<String, String> mapServlet = new HashMap<String, String>(); System.out.println(" ...
- 使用Cytoscape画PPI网络图
打开Cytoscape软件,根据菜单导入string_interactions.tsv文件 File ----> Import ----> Network from File 会弹出下图对 ...
- 22.NULL 值
NULL 值是遗漏的未知数据. 默认地,表的列可以存放 NULL 值. 本章讲解 IS NULL 和 IS NOT NULL 操作符. SQL NULL 值 如果表中的某个列是可选的,那么我们可以在不 ...
- xgboost 并行调参
Parallelism When Cross Validating XGBoost Models This raises the question as to how cross validation ...
- Django-----restframework图解
- nodelet的应用
1.创建一个包,如example_pkg catkin_create_pkg example_pkg 2.创建MyNodeletClass.h文件 cd ~/catkin_ws/src/example ...
- 第三周Linux编程实例练习
通过以下程序来练习 head.h # ifndef HEAD_H #define HEAD_H #include <stdio.h> int add(int,int); int sub(i ...
- Html.Partial方法和Html.RenderPartial方法
分布视图 PartialView 一般是功能相对独立的,类似用户控件的视图代码片段,可以被多个视图引用,引用方式如下. 1,Html.Partial方法和Html.RenderPartial方法 静态 ...
- Java Random、ThreadLocalRandom、UUID类中的方法应用(随机数)
1.Random:产生一个伪随机数(通过相同的种子,产生的随机数是相同的): Random r=new Random(); System.out.println(r.nextBoolean()); S ...