【bzoj3329】Xorequ 矩阵快速幂
Description
Input
第一行一个正整数,表示数据组数据 ,接下来T行
每行一个正整数N
Output
2T行
第2i-1行表示第i个数据中问题一的解,
第2*i行表示第i个数据中问题二的解,
Sample Input
1
1
Sample Output
1
2
HINT
x=1与x=2都是原方程的根,注意第一个问题的解不要mod 10^9+7
1<=N<=10^18
1<=T<=1000
Sol
移项并转化得\(x\&2x=0\)
所以\(x\)相邻两项不能是俩1
枚举上一位是啥可得\(f[i]=f[i-1]+f[i-2]\)
第二问直接矩阵快速幂
第一问二进制拆分之后按位考虑计算贡献,出现两个相邻位之后break
并不需要数位dp。。。
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll T,n,ans,m,F[70],w[70],P=1e9+7;
struct M
{
ll m[2][2];
M(){memset(m,0,sizeof(m));}
friend M operator*(M a,M b)
{
M c;
for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%P;
return c;
}
friend M operator^(M a,ll b){M c;for(int i=0;i<2;i++) c.m[i][i]=1;for(;b;b>>=1,a=a*a) if(b&1) c=c*a;return c;}
}a,b;
int main()
{
F[1]=1;for(int i=2;i<=64;i++) F[i]=F[i-1]+F[i-2];
a.m[0][0]=a.m[0][1]=a.m[1][0]=1;
for(scanf("%lld",&T);T--;printf("%lld\n%lld\n",ans-1,b.m[0][0]))
{
scanf("%lld",&n);++n;b=a^n;m=0;
while(n) w[++m]=n&1,n>>=1;w[m+1]=ans=0;
for(int i=m;i;i--){if(w[i]) ans+=F[i+1];if(w[i+1]&&w[i]) break;}
}
}
【bzoj3329】Xorequ 矩阵快速幂的更多相关文章
- BZOJ3329 Xorequ(数位dp+矩阵快速幂)
显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...
- BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]
数 位 D P 开 long long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...
- BZOJ 3329 Xorequ:数位dp + 矩阵快速幂
传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
随机推荐
- IDA Pro 权威指南学习笔记(六) - 次要的 IDA 显示窗口
十六进制窗口 IDA 十六进制窗口可以配置为显示各种格式,并可作为十六进制编辑器使用 默认情况下,十六进制窗口显示程序内容和列表的标准十六进制代码,每行显示 16 个字节,以及其对应的 ASCII 字 ...
- Python 列表学习笔录
列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型.列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类 ...
- 只能在执行Render() 的过程中调用 RegisterForEventValidation;
October 17, 2008 3:28 PMMarch 29, 2013 8:28 PM Aillo 编程 0 Comments 在实现"将GridView中的数据导出到Exce ...
- 有一些sql 是必须要做笔记的!!
select CONCAT(unix_timestamp(),"-",id,"-",name) as aa,age from workers; //连接字段 s ...
- Python三元运算和lambda表达式
一.三元运算 1.定义:三元运算是if-else 语句的快捷操作,也被称为条件运算. 2.结构: [on_true] if [expression] else [on_false] 3.示例: ...
- Animation组件
[Animation组件] Animation是Unity3D中老的动画组件,从4.x起已全面被MecAnim中的Animator组建所替代.但是4.x仍保留了Animation组件,所以了解此组件还 ...
- ms project设置行高
1.取消某列的自动换行右击“任务名称”——自动换行 2.全选所有任务点击左上角单元格 3.设置所有行的行高点击任意行最左边单元格的下边框,向上拖放 4.ok
- tomcat报503 或者无法启动应用
一般都是配置文件有问题,或者路径问题,或者jvm的参数路径问题.... 总之,报错实在是不清楚!这点比resin差远了!!
- DataSet、DataTable转换List(泛型集合与DataSet互相转换 )
using System.Data; using System.Reflection; using System.Collections; using System.Collections.Gener ...
- Jmeter调度器配置
Jmeter的线程组设置里有一个调配器设置,用于设置该线程组下脚本执行的开始时间.结束时间.持续时间及启动延迟时间.当需要半夜执行性能测试时会用到这个功能. ps:设置调度器配置,需要将前面的循环次数 ...