Description

Input

第一行一个正整数,表示数据组数据 ,接下来T行

每行一个正整数N

Output

2T行

第2
i-1行表示第i个数据中问题一的解,

第2*i行表示第i个数据中问题二的解,

Sample Input

1

1

Sample Output

1

2

HINT

x=1与x=2都是原方程的根,注意第一个问题的解不要mod 10^9+7

1<=N<=10^18

1<=T<=1000

Sol

移项并转化得\(x\&2x=0\)

所以\(x\)相邻两项不能是俩1

枚举上一位是啥可得\(f[i]=f[i-1]+f[i-2]\)

第二问直接矩阵快速幂

第一问二进制拆分之后按位考虑计算贡献,出现两个相邻位之后break

并不需要数位dp。。。

Code

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll T,n,ans,m,F[70],w[70],P=1e9+7;
struct M
{
ll m[2][2];
M(){memset(m,0,sizeof(m));}
friend M operator*(M a,M b)
{
M c;
for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%P;
return c;
}
friend M operator^(M a,ll b){M c;for(int i=0;i<2;i++) c.m[i][i]=1;for(;b;b>>=1,a=a*a) if(b&1) c=c*a;return c;}
}a,b;
int main()
{
F[1]=1;for(int i=2;i<=64;i++) F[i]=F[i-1]+F[i-2];
a.m[0][0]=a.m[0][1]=a.m[1][0]=1;
for(scanf("%lld",&T);T--;printf("%lld\n%lld\n",ans-1,b.m[0][0]))
{
scanf("%lld",&n);++n;b=a^n;m=0;
while(n) w[++m]=n&1,n>>=1;w[m+1]=ans=0;
for(int i=m;i;i--){if(w[i]) ans+=F[i+1];if(w[i+1]&&w[i]) break;}
}
}

【bzoj3329】Xorequ 矩阵快速幂的更多相关文章

  1. BZOJ3329 Xorequ(数位dp+矩阵快速幂)

    显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...

  2. BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]

    数    位    D    P    开    long    long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...

  3. BZOJ 3329 Xorequ:数位dp + 矩阵快速幂

    传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...

  4. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  5. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  6. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  7. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  8. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  9. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

随机推荐

  1. IDA Pro 权威指南学习笔记(六) - 次要的 IDA 显示窗口

    十六进制窗口 IDA 十六进制窗口可以配置为显示各种格式,并可作为十六进制编辑器使用 默认情况下,十六进制窗口显示程序内容和列表的标准十六进制代码,每行显示 16 个字节,以及其对应的 ASCII 字 ...

  2. Python 列表学习笔录

    列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型.列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类 ...

  3. 只能在执行Render() 的过程中调用 RegisterForEventValidation;

    October 17, 2008  3:28 PMMarch 29, 2013  8:28 PM Aillo 编程   0 Comments 在实现"将GridView中的数据导出到Exce ...

  4. 有一些sql 是必须要做笔记的!!

    select CONCAT(unix_timestamp(),"-",id,"-",name) as aa,age from workers; //连接字段 s ...

  5. Python三元运算和lambda表达式

    一.三元运算 1.定义:三元运算是if-else 语句的快捷操作,也被称为条件运算. 2.结构: [on_true]  if  [expression]  else  [on_false] 3.示例: ...

  6. Animation组件

    [Animation组件] Animation是Unity3D中老的动画组件,从4.x起已全面被MecAnim中的Animator组建所替代.但是4.x仍保留了Animation组件,所以了解此组件还 ...

  7. ms project设置行高

    1.取消某列的自动换行右击“任务名称”——自动换行 2.全选所有任务点击左上角单元格 3.设置所有行的行高点击任意行最左边单元格的下边框,向上拖放 4.ok

  8. tomcat报503 或者无法启动应用

    一般都是配置文件有问题,或者路径问题,或者jvm的参数路径问题.... 总之,报错实在是不清楚!这点比resin差远了!!

  9. DataSet、DataTable转换List(泛型集合与DataSet互相转换 )

    using System.Data; using System.Reflection; using System.Collections; using System.Collections.Gener ...

  10. Jmeter调度器配置

    Jmeter的线程组设置里有一个调配器设置,用于设置该线程组下脚本执行的开始时间.结束时间.持续时间及启动延迟时间.当需要半夜执行性能测试时会用到这个功能. ps:设置调度器配置,需要将前面的循环次数 ...