EXTENDED LIGHTS OUT
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9612   Accepted: 6246

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right.


The aim of the game is, starting from any initial set of lights on
in the display, to press buttons to get the display to a state where all
lights are off. When adjacent buttons are pressed, the action of one
button can undo the effect of another. For instance, in the display
below, pressing buttons marked X in the left display results in the
right display.Note that the buttons in row 2 column 3 and row 2 column 5
both change the state of the button in row 2 column 4,so that, in the
end, its state is unchanged.



Note:

1. It does not matter what order the buttons are pressed.

2. If a button is pressed a second time, it exactly cancels the
effect of the first press, so no button ever need be pressed more than
once.

3. As illustrated in the second diagram, all the lights in the first
row may be turned off, by pressing the corresponding buttons in the
second row. By repeating this process in each row, all the lights in the
first

four rows may be turned out. Similarly, by pressing buttons in
columns 2, 3 ?, all lights in the first 5 columns may be turned off.

Write a program to solve the puzzle.

Input

The
first line of the input is a positive integer n which is the number of
puzzles that follow. Each puzzle will be five lines, each of which has
six 0 or 1 separated by one or more spaces. A 0 indicates that the light
is off, while a 1 indicates that the light is on initially.

Output

For
each puzzle, the output consists of a line with the string: "PUZZLE
#m", where m is the index of the puzzle in the input file. Following
that line, is a puzzle-like display (in the same format as the input) .
In this case, 1's indicate buttons that must be pressed to solve the
puzzle, while 0 indicate buttons, which are not pressed. There should be
exactly one space between each 0 or 1 in the output puzzle-like
display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

Greater New York 2002

题意:

有5行6列共30个开关,每按动一个开关,该开关及其上下左右共5个开关的状态都会改变,初始给你这30个开关的状态求按动那些开关能够使这些开关的状态都是0.

思路:因为每盏灯,如果操作两次就相当于没有操作,所以相当于(操作次数)%2,即异或操作。

考虑一个2*3的图,最后需要的状态是 :,如果初始状态为:。对这两个矩阵的每个数字做异或操作可以得到线性方程组每个方程的答案。

总共6盏灯,0-5。那么可以列出6个方程。

对于第0盏灯,会影响到它的是第0, 1, 3盏灯,因此可以列出方程1*x0 + 1*x1 + 0*x2 + 1*x3 + 0*x4 + 0*x5= 0。

对于第1盏灯,会影响到它的是第0, 1, 2,4盏灯,因此可以列出方程1*x0 + 1*x1 + 1*x2 + 0*x3 + 1*x4 + 0*x5 = 1。

对于第2盏灯,会影响到它的是第1, 2, 5盏灯,因此可以列出方程0*x0 + 1*x1 + 1*x2 + 0*x3 + 0*x4 + 1*x5 = 0。

.....

所以最后可以列出增广矩阵:

然后用高斯消元求这个矩阵的解就可以了。

30个变量30个方程组

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAX=;
int a[MAX][MAX]; //增广矩阵
int x[MAX]; //解集
int equ,var; //行数和列数
void init()
{
equ=;var=;
memset(a,,sizeof(a));
for(int i=;i<;i++) //t点和上下左右都改变
for(int j=;j<;j++)
{
int t=*i+j;
a[t][t]=;
if(i>) a[*(i-)+j][t]=;
if(i<) a[*(i+)+j][t]=;
if(j>) a[t-][t]=;
if(j<) a[t+][t]=;
}
}
void gaos()
{
int maxr;
for(int k=,col=;k<equ&&col<var;k++,col++)
{
maxr=k; /****变为行阶梯形矩阵***/
for(int i=k+;i<equ;i++)
if(abs(a[i][col])>abs(a[maxr][col]))
maxr=i;
if(maxr!=k)
{
for(int i=col;i<var+;i++)
swap(a[maxr][i],a[k][i]);
}
if(a[k][col]==) //第k行后的第col列全部是0了,换下一列
{
k--;
continue;
}
for(int i=k+;i<equ;i++) //第k行减去第i行的值赋给第i行,变为行阶梯型矩阵,由于都是01型矩阵,不用找lcm直接减就行
{
if(a[i][col]!=)
{
for(int j=col;j<var+;j++)
a[i][j]^=a[k][j];
}
}
for(int i=var-;i>=;i--) //算出解集
{
x[i]=a[i][var];
for(int j=i+;j<var;j++) //该行第var列是1说明该行有且只有一个x取1,若为0说明没有取1的x.
x[i]^=(a[i][j]&x[j]);
}
}
}
int main()
{
int t,ca=;
scanf("%d",&t);
while(t--)
{
ca++;
init();
for(int i=;i<;i++)
scanf("%d",&a[i][]);
gaos();
printf("PUZZLE #%d",ca);
for(int i=;i<;i++)
{
if(i%==) printf("\n%d",x[i]);
else printf(" %d",x[i]);
}
printf("\n");
}
return ;
}

*POJ 1222 高斯消元的更多相关文章

  1. POJ 1222 高斯消元更稳

    大致题意: 有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示.按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0.现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的 ...

  2. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  3. POJ SETI 高斯消元 + 费马小定理

    http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...

  4. POJ 2065 高斯消元求解问题

    题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...

  5. poj 2065 高斯消元(取模的方程组)

    SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description ...

  6. POJ 1681 高斯消元 枚举自由变元

    题目和poj1222差不多,但是解法有一定区别,1222只要求出任意一解,而本题需要求出最少翻转次数.所以需要枚举自由变元,变元数量为n,则枚举的次数为1<<n次 #include < ...

  7. POJ 1830 高斯消元

    开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

  9. Gym 100008E Harmonious Matrices 高斯消元

    POJ 1222 高斯消元更稳 看这个就懂了 #include <bits/stdc++.h> using namespace std; const int maxn = 2000; in ...

随机推荐

  1. iOS self

    如果self在对象方法中 那么self就代表调用当前对象方法的那个对象 如果self在类方法中 那么self就代表调用当前类方法的那个类 总结:self的使用只需关注self在哪个方法中 如果在类方法 ...

  2. Java Static关键字详解

    提起static关键字,相信大家绝对不会陌生,但是,想要完全说明白,猛的一想,发现自己好像又说不太明白... ...比方说,昨天被一个同学问起的时候... ... 当然,不是所有人都像我一样学艺不精的 ...

  3. ubuntu svn

    http://blog.csdn.net/neutrojan/article/details/37659747

  4. Delphi之通过代码示例学习XML解析、StringReplace的用法

    这个程序可以用于解析任何合法的XML字符串. 首先是看一下程序的运行效果: 以解析这样一个XML的字符串为例: <?xml version="1.0" encoding=&q ...

  5. yum 源

    epel 6源: cd /usr/local/src wget https://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noar ...

  6. UnrealScript语言基础

    总体特征 (1)大小写不敏感.关键字.宏.变量名.函数名以及类名不区分大小写:变量名可以与关键字同名 (2)局部变量.成员变量未初始化时,会被编译器初始化 (3)没有全局变量.全局函数,所有东西必须写 ...

  7. ng-table 简单实例

    今天用的AngularJs需要做个分页,于是用ng-table去实现,不过这个官网感觉有点坑,说的不够清楚. 下面实现了一个Demo实力,代码如下: <!DOCTYPE html> < ...

  8. CozyRSS开发记录10-RSS源管理

    CozyRSS开发记录10-RSS源管理 1.RSS源树结构 做解析体力活很多,把RSS解析的优化先放放,先玩一玩RSS源的管理. 虽然在初步的设计中,RSS源是以一个列表的方式来展示,但是,我觉得如 ...

  9. 执行打的maven jar包时出现“Exception in thread "main" java.lang.SecurityException: Invalid signature file digest for Manifest main attributes”

    Exception in thread "main" java.lang.SecurityException: Invalid signature file digest for ...

  10. (转)java自带线程池和队列详细讲解 - CSDN过天的专栏

    一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的.在jdk1.5之后这一情况有了很大的改观.Jdk1.5之后加入了java.util ...