POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)
The Maximum Number of Strong Kings
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2488 | Accepted: 1131 |
题目链接:http://poj.org/problem?id=2699
Description:
A tournament can be represented by a complete graph in which each vertex denotes a player and a directed edge is from vertex x to vertex y if player x beats player y. For a player x in a tournament T, the score of x is the number of players beaten by x. The score sequence of T, denoted by S(T) = (s1, s2, . . . , sn), is a non-decreasing list of the scores of all the players in T. It can be proved that S(T) = (s1, s2, . . . , sn) is a score sequence of T if and only if
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores.
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2. 
Input:
The first line of the input file contains an integer m, m <= 10, which represents the number of test cases. The following m lines contain m score sequences in which each line contains a score sequence. Note that each score sequence contains at most ten scores.
Output:
The maximum number of strong kings for each test case line by line.
Sample Input:
5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3
Sample Output:
2
4
5
3
5
题意:
多组数据,然后对于每组数据给出每个人击败的人数,为最多有多少人是强者。
强者的定义为:得到的分数最多 or 击败所有分数比他高的人。这里每击败一个人都可以得一分。
题解:
这题orz...没有想出来。但最后看了题解后发现就是个公平分配问题。
我们建图时比赛在左边,人在右边。每场比赛连两个人,代表这两个人在比赛,然后每场比赛只会分配1的流出去,代表哪个人获胜。
这就是我们建图的大体思路。
由于人数很少,所以我们可以枚举来确定强者,那么怎么确定呢,直接二进制表示的话复杂度太高。
通过证明可以发现,分数越高的人越有可能成为强者,简要证明过程如下:
假设分数为: ...i j k ......,这里i和k时强者,而j不是。如果i是强者,那么说明i打败了后面的所有人,而j不是强者,则说明他可能输给了后面的某几个人。
因为j的分数比i的分数高,说明j多欺负了几个弱者。那么现在我们让j赢回高分的人,让i去赢前面多欺负的那几个人,此时i可能会输给比他强的人,此时满足赢的数量和之前一样。相当于换了人去欺负那些弱者。这样j也可以变为强者了。
以上就是简略的一个证明,只要保证每个人的分数不变就ok。
然后我们从分数大开始枚举,在建图时,源点连接比赛,容量为1;人连接汇点,容量为他能赢的最多次数。
比赛连接两个人时,如果一个人是强者并且另一个人分数比他高,那么只能强者赢;否则哪个赢都可以。对赢的那个人连接容量为1的边。
最后跑个最大流看看比赛能否比完就行了(我这里是通过是否每个人的分数能够符合题意来判断的)。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define s 0
#define t 200
#define INF 0x3f3f3f3f
#define st n*(n-1)/2
using namespace std;
typedef long long ll;
const int N = ;
int T;
char str[N];
int a[N],vis[N],head[N],d[N];
int ans,tot,mx,n,sum;
struct Edge{
int v,c,next;
}e[N*N];
void adde(int u,int v,int c){
e[tot].v=v;e[tot].next=head[u];e[tot].c=c;head[u]=tot++;
e[tot].v=u;e[tot].next=head[v];e[tot].c=;head[v]=tot++;
}
void build(){
memset(head,-,sizeof(head));tot=;
for(int i=;i<=st;i++) adde(s,i,);
int fir = st+,last = st+;
for(int i=;i<=st;i++){
if(vis[fir]&&a[last-st]>a[fir-st]){
adde(i,fir,);adde(i,last,);
}else if(vis[last]&&a[last-st]<a[fir-st]){
adde(i,fir,);adde(i,last,);
}else{
adde(i,fir,);adde(i,last,);
}
last++;
if(last>st+n){
fir++;last=fir+;
}
}
for(int i=st+;i<=st+n;i++) adde(i,t,a[i-st]);
}
bool bfs(int S,int T){
memset(d,,sizeof(d));d[S]=;
queue <int > q;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!d[v] && e[i].c>){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T]!=;
}
int dfs(int S,int a){
int flow=,f;
if(S==t || a==) return a;
for(int i=head[S];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]!=d[S]+) continue ;
f=dfs(v,min(a,e[i].c));
if(f){
e[i].c-=f;
e[i^].c+=f;
flow+=f;
a-=f;
if(a==) break;
}
}
if(!flow) d[S]=-;
return flow;
}
int Dinic(){
int max_flow=;
while(bfs(,t)) max_flow+=dfs(,INF);
return max_flow;
}
int main(){
cin>>T;
getchar();
while(T--){
memset(vis,,sizeof(vis));
gets(str);
mx=n=sum=;ans=-;
int len = strlen(str);
for(int i=;i<len;i++)
if(str[i]<='' && str[i]>='')
a[++n]=str[i]-'',mx = max(mx,a[n]),sum+=a[n];
for(int i=n;i>=;i--){
if(a[i]==mx) continue ;
vis[i+st]=;
build();
int max_flow=Dinic();
if(max_flow<sum){
ans=n-i;
break ;
}
}
if(ans==-) ans=n;
cout<<ans<<endl;
}
return ;
}
POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)的更多相关文章
- POJ2699 The Maximum Number of Strong Kings
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2102 Accepted: 975 Description A tour ...
- POJ2699 The Maximum Number of Strong Kings(最大流)
枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...
- poj 2699 The Maximum Number of Strong Kings 枚举 最大流
题目链接 题意 对于一个竞赛图(有向完全图),其顶点是选手,边是比赛,边\(e=(u,v)\)代表该场比赛中\(u\)战胜\(v\). 现定义选手的分数为其战胜的人的个数(即竞赛图中点的出度).并且定 ...
- 【POJ2699】The Maximum Number of Strong Kings(网络流)
Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...
- POJ 2699 The Maximum Number of Strong Kings Description
The Maximum Number of Strong Kings Description A tournament can be represented by a complete graph ...
- 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)
题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...
- POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)
http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...
- POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)
题意:有n(n<=10)个选手,两两之间打比赛,共有n*(n-1)/2场比赛,赢一场得1分.给出每个人最后的得分.求有多少个定义如下的strong king:赢了所有得分比自己高的人或本身就是分 ...
- poj 2699 The Maximum Number of Strong Kings【最大流+枚举】
因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...
随机推荐
- SpringMVC接收前端传值有哪些方式?
有很多种,比如: 1.通过@RequestParam注解接收请求参数: 2.通过Bean封装,接收多个请求参数 3.通过@ModelAttribute绑定接收前端表单数据 4.通过@PathVaria ...
- DDL失败案例
问题描述 今天对线上某个业务的大表120G进行重建表操作时遇到报错,该表有个比较显著的特征是*写入量比较大,每天写入加更新的频率在数千万级别.大致的环境 1 版本:Percona 5.6.24 2 操 ...
- WPF中,如何将绑定源设置到单件实例
原文:WPF中,如何将绑定源设置到单件实例 WPF中,如何将绑定源设置到单件实例 周银辉 大概两个月前,曾有位朋友问我:如 ...
- LeetCode:12. Integer to Roman(Medium)
1. 原题链接 https://leetcode.com/problems/integer-to-roman/description/ 2. 题目要求 (1) 将整数转换成罗马数字: (2) 整数的范 ...
- java反射操作类方法与属性
package com.fanshe.test; public class User { private int age; private String email; private String u ...
- 搭建cvs服务器
http://zhangjunhd.blog.51cto.com/113473/78595 http://www.cnblogs.com/lee/archive/2008/10/22/1317226. ...
- asp.net mvc 无刷新加载
1.视图(index) <!--start--> <div data-am-widget="list_news" class="am-list-news ...
- jmeter-maven-plugin
Maven编译JMeter, 使用的是jmeter-maven-plugin插件: <?xml version="1.0" encoding="UTF-8" ...
- python 自动化-"Elements not visible"
一,今天试着跑一个多乘客下单的python脚本, 总是遇到 Elements not visible 或者 not clickable的错误 解决方法: 1. 首先观察脚本运行时, 报错的那个元素 ...
- python终极篇 --- django---班级管理系统
周末没事自己写了个班级管理系统,虽然简单,但也算个前期学习的总结吧 from django.db import models # Create your models here. class Banj ...