这篇论文真是让我又爱又恨,可以说是我看过的最认真也是最多次的几篇paper之一了,首先deformable conv的思想我觉得非常好,通过end-to-end的思想来做这件事也是极其的make sense的,但是一直觉得哪里有问题,之前说不上来,最近想通了几点,先初步说几句,等把他们的代码跑通并且实验好自己的几个想法后可以再来聊一聊。首先我是做semantic segmentation的,所以只想说说关于这方面的问题。

  直接看这篇paper的话可能会觉得ji feng的这篇工作非常棒,但实际上在我看来还是噱头多一点(我完全主观的胡说八道),deformable conv是STN和DFF两篇工作的结合,前者提供了bilinear sample的思路和具体的bp,后者提供了warp的思路和方法,不过好像说的也不是很准确。。我暂时的理解是这样的:deformable conv就是把deep feature flow中的flow换成了可学习的offset。接下来分为亮点和槽点来说一说。

一、亮点

  亮点说实话还是很多的,首先解决了STN(spatial transform network)的实用性问题,因为STN是对整个feature map做transform的动作,例如学习出一个linear transform的 matrix,这个在做minist的时候当然是极其合理的,但是在真实世界中,这个动作不仅不合理而且意义不大的,因为复杂场景下的信息很多,背景也很多,那么它是怎么做的呢?

  首先我想先说一个很重要的误区,很多人以为deformable conv学习的是个deformabe 的kernel,比方说本来是一个3*3相互连接的kernel,最后变成了一个没个位置都有一个offset的kernel。实际情况并不是这样的,作者并没有对kernel学习offset,而是对feature的每个位置学习一个offset,一步一步的解释就是:首先有一个原始的feature map F,在上面做channel为18的3*3的卷积,得到channel=18的feature map F_offset,然后再对F做deformable conv并且传入offset 的值F_offset,在新得到的结果上,每个值对应原来的feature map F上是从一个3*3的kernel上计算得到的,每个值对应的F上的3*3的区域上的每个值都有x、y方向上的两个offset,这3*3*2=18的值就由刚才传入的F_offset决定。。。。貌似说的有点绕,其实理清楚关键的一点就是:学习出来的offset是channel=18并且和原 feature map一样大小的,对应的是main branch上做deformable conv时候每位置上的kernel的每个位置的offset。

                   

知乎上有个人说了一句我特别赞同的话:用bilinear的方法代替weight的方法,即用采样代替权重的方法。这个思维是可以发散开来做更多的工作的,这也是我觉得这篇paper最棒的地方。

二、槽点

  这个其实我今天写篇blog的重点。。。我对offset能否学习到极其的的不看好,虽然最后还要看实验的效果和实际的结果,当我想说两点。

  1、从feature的需求来看,senmantic segmentation对于feature的需求是跟detection不同的,这个问题其实jifeng Dai和kaiming的R-FCN中都提到过,然后semantic segmentation需要的feature不会过于关注什么旋转平移不变性,也就是物体的旋转平移对结果是有影响的,他们对position是care的,这个问题有时间我想再看看R-FCN讨论一发,因此这里直接用feature 通过一层卷积就可以学习到offset,我是怀疑的。

  2.上面的怀疑其实有点没道理,这次有个稍微有那么一丢丢的怀疑,bilinear sample其实是一个分段线性函数,所以逻辑上在bp的时候,你要想你的目的是让loss下降的话,就不能让你的step太大以至于超过来当前的线性区间,也就是你在当前四个点中算出来梯度,如果你更新后跳到另外四个点上来,理论上这次的gradient的更新就是错误的,loss是不一定下降的,但是话说回来,如果不跳到另外四个点,这个offset永远限制在当前四个点里面的话,也是毫无意义的。话再说回来,因为整个feature map还是smooth的,这也跟图像的性质有关,所以我们还是比较相信只要你的lr不是很大,loss还是会下降的。  

三、总结

  总的来说这是一篇很有意义的工作,在我看来,任何能启发之后的工作和引起人思考的工作都是很有意义的,无论它work不work,在benchmark跑的怎么样。

  还有些东西我想等实验跑完再来说说,所以待续~

论文讨论&&思考《Deformable Convolutional Networks》的更多相关文章

  1. 图像处理论文详解 | Deformable Convolutional Networks | CVPR | 2017

    文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/a ...

  2. 目标检测论文阅读:Deformable Convolutional Networks

    https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformab ...

  3. 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

    论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...

  4. 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks

    上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...

  5. Deformable Convolutional Networks

    1 空洞卷积 1.1 理解空洞卷积 在图像分割领域,图像输入到CNN(典型的网络比如FCN)中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预 ...

  6. VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition

    Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...

  7. [论文理解] Learning Efficient Convolutional Networks through Network Slimming

    Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧 ...

  8. 论文学习:Fully Convolutional Networks for Semantic Segmentation

    发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...

  9. [论文阅读]VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION(VGGNet)

    VGGNet由牛津大学的视觉几何组(Visual Geometry Group)提出,是ILSVRC-2014中定位任务第一名和分类任务第二名.本文的主要贡献点就是使用小的卷积核(3x3)来增加网络的 ...

随机推荐

  1. 网站漏洞修复之最新版本UEditor漏洞

    UEditor于近日被曝出高危漏洞,包括目前官方UEditor 1.4.3.3 最新版本,都受到此漏洞的影响,ueditor是百度官方技术团队开发的一套前端编辑器,可以上传图片,写文字,支持自定义的h ...

  2. 回形矩阵--python

    def bsm(n): a = [[0]*n for x in range(n)] p = 0 q = n-1 t = 1 while p < q: for i in range(p,q): a ...

  3. 03---Nginx配置文件

    #启动子进程程序默认用户#user nobody;#一个主进程和多个工作进程.工作进程是单进程的,且不需要特殊授权即可运行:这里定义的是工作进程数量worker_processes 1; #全局错误日 ...

  4. 【POJ】1008 Maya Calendar

    参考:https://blog.csdn.net/u011392408/article/details/28866779 https://blog.csdn.net/qq_36424540/artic ...

  5. 如何从海量IP中提取访问最多的10个IP

    算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理: 2.可以考虑采用分而治之的思想,按照IP地址的Hash(IP) % 1024的值,把海量IP日 ...

  6. 30分钟 带你浅入requirejs源码

    因为最近项目想现实一个单页功能,用的是react ,然后看了一下react route,挖槽 gzip后16k? 然后我简单写了一个纯单页(不支持多页的单页,所有入口都经过rewrite跑到index ...

  7. Unity3d工具方法小集

    1.获取垂直水平方向上的输入: float moveHorizontal = Input.GetAxis("Horizontal"); float moveVertical = I ...

  8. 2.Linux文件和目录

    1. 目录和路径 linux下比较特殊的目录: . 代表此层目录 .. 代表上一层目录 - 代表前一个工作目录 ~ 代表『目前使用者身份』所在的home目录 ~account 代表 account 这 ...

  9. spring 读取properties文件--通过注解方式

    问题: 需要通过properties读取页面的所需楼盘的名称.为了以后便于修改. 解决: 可以通过spring的 PropertiesFactoryBean 读取properties属性,就不需要自己 ...

  10. 「Haskell 学习」一 环境与大致了解

    感谢<Real World Haskell>在网上的免费发布,可以白嫖学Haskell这个久闻大名的函数式编程语言了. 本文运行于openSUSE Tumbleweed下,运行相关命令时留 ...