D - Kadj Squares

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

In this problem, you are given a sequence S1S2, ..., Sn of squares of different sizes. The sides of the squares are integer numbers. We locate the squares on the positive x-y quarter of the plane, such that their sides make 45 degrees with x and y axes, and one of their vertices are on y=0 line. Let bi be the x coordinates of the bottom vertex of Si. First, put S1 such that its left vertex lies on x=0. Then, put S1, (i > 1) at minimum bi such that

  • bi > bi-1 and
  • the interior of Si does not have intersection with the interior of S1...Si-1.

The goal is to find which squares are visible, either entirely or partially, when viewed from above. In the example above, the squares S1S2, andS4 have this property. More formally, Si is visible from above if it contains a point p, such that no square other than Si intersect the vertical half-line drawn from p upwards.

Input

The input consists of multiple test cases. The first line of each test case is n (1 ≤ n ≤ 50), the number of squares. The second line contains nintegers between 1 to 30, where the ith number is the length of the sides of Si. The input is terminated by a line containing a zero number.

Output

For each test case, output a single line containing the index of the visible squares in the input sequence, in ascending order, separated by blank characters.

Sample Input

4
3 5 1 4
3
2 1 2
0

Sample Output

1 2 4
1 3

题意:变长不同的n个正方形,斜45度按顺序平放在坐标轴上,尽量靠左但不能跃出x=0,

   问从上往下看,哪些正方形是可见的。

题解:1、假如前i-1个正方形位置都确定了,那么可以让第i个正方形与前i-1个正方形每个

   都计算一次它如果和它相依靠的话左边坐标的值,然后取一个最大的便是这个正方形

   的左端点位置。

   2、对于j<i的正方形,如果i的边长大于j那么j的最右能看到的部分就不会比i的最左端

   点大,反之,i的最左能看到的部分就不会比j最右端点小。

   3、通过第2步筛选,将那些最左能看到的端点比最右能看到端点大或等于的去掉,剩

   下的就是所要求的。

注意:为避免浮点数运算,根号2约掉了,代码中的边长实际上指的就是边长/根号2,也可以

   将该题理解为将正方形投影到x轴上。

#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
struct sa
{
int l,r,len;
}data[];
int main()
{
int n;
while(cin>>n&&n)
{
memset(data,,sizeof(data));
for(int i=;i<n;i++)
{
cin>>data[i].len;
//现在把图形扩大根号2倍
//边长现在是根号2*len 而len现在指的是对角线的一半的长度
for(int j=;j<i;j++)
//当l是最大值的时候,abs那段是两个图形的重叠部分
//每一个data[j].r求的都是假设ij有重合部分的情况的l
//但是只有真正重合的j能求出真正的l也就是最大的l
//根据等腰三角形性质画一画就明白怎么推的了
//等腰三角形指的是以x周为斜边的那个 两个45度
data[i].l=max(data[i].l,data[j].r-abs(data[i].len-data[j].len));
data[i].r=data[i].l+*data[i].len;
}
for(int i=;i<n;i++)
{
for(int j=;j<i;j++)
{
if(data[j].r>data[i].l)//可更新 有两种情况
{
if(data[j].len<data[i].len) //右面大
data[j].r=data[i].l;//右面的把左面的挡住了一块
else
data[i].l=data[j].r;//左面的把右面的挡住了一块
}
}
}
bool first=true;
for(int i=;i<n;i++)
{
if(data[i].l<data[i].r)
{
if(first)
{
cout<<i+;
first=false;
}
else
cout<<" "<<i+;
}
}
cout<<endl;
}
return ;
}

poj3347 Kadj Squares (计算几何)的更多相关文章

  1. poj3347 Kadj Squares【计算几何】

    Kadj Squares Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3594   Accepted: 1456 Desc ...

  2. POJ3347 Kadj Squares

    嘟嘟嘟 题意:给出一堆正方形的边长,且这些正方形都是\(45 ^ {\circ}\)斜放着并且紧挨着的,求从上往下看能看到几个正方形. 真是一道好题--跟计算几何关系不大. 想一下,如果我们能求出正方 ...

  3. POJ 3347 Kadj Squares 计算几何

    求出正方形的左右端点,再判断是否覆盖 #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  4. POJ 3347 Kadj Squares

    Kadj Squares Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 2132   Accepted: 843 Descr ...

  5. POJ 3347 Kadj Squares (计算几何)

    题目: Description In this problem, you are given a sequence S1, S2, ..., Sn of squares of different si ...

  6. POJ 3347 Kadj Squares (计算几何+线段相交)

    题意:从左至右给你n个正方形的边长,接着这些正方形都按照旋转45度以一角为底放置坐标轴上,最左边的正方形左端点抵住y轴,后面的正方形依次紧贴前面所有正方形放置,问从上方向下看去,有哪些正方形是可以被看 ...

  7. POJ3347:Kadj Squares——题解

    http://poj.org/problem?id=3347 题目大意:给定一些正方形的边长,让他们尽可能向左以45°角排列(不能互相重合),求在上面看只能看到哪几个正方形. ———————————— ...

  8. Kadj Squares - POJ 3347

    题目大意:给一些序列的正方形的边长,然后让这个正方形倾斜45度,放在第一象限,一个角要紧挨着x轴,按照输入的顺序放下去,然后问最后从上往下看可以看到那些正方形?   分析:不能算是计算几何题..... ...

  9. 简单几何(线段覆盖) POJ 3347 Kadj Squares

    题目传送门 题意:告诉每个矩形的边长,它们是紧贴着的,问从上往下看,有几个还能看到. 分析:用网上猥琐的方法,将边长看成左端点到中心的距离,这样可以避免精度问题.然后先求出每个矩形的左右端点,然后如果 ...

随机推荐

  1. filter-policy和AS-PATH-FILTER过滤BGP路由条目

    Filter-policy过滤BGP路由条目 一:根据项目需求搭建好拓扑图如下: 二:配置 1:对项目图做理论分析,首先RT1和RT2属于EBGP(不同自治系统之间的直连路由),而RT2和RT3属于I ...

  2. 深度解析JQuery Dom元素操作技巧

    深度解析JQuery Dom元素操作技巧 DOM是一种与浏览器.平台.语言无关的接口,使用该接口可以轻松访问页面中所有的标准组件,这篇文章给大家介绍了JQuery dom元素操作方法,写的十分的全面细 ...

  3. [原]解决phpstudy下的nginx无法运行的问题

    一直在用phpstudy下的apache,今天忽然想切换到nginx,出现了一些错误,最终还是解决了. 之前是php 5.3 + apache 现在是php 5.3n + nginx 问题就出在这n上 ...

  4. centos编译安装rabbitmq

    安装环境 [root@VM_12_50_centos rabbitmq]# uname -a Linux VM_12_50_centos 3.10.0-514.21.1.el7.x86_64 #1 S ...

  5. Angularjs 跨域post数据到springmvc

    先贴网上己有解决方案链接: http://www.tuicool.com/articles/umymmqY  (讲的是springmvc怎么做才可以跨域) http://my.oschina.net/ ...

  6. python2.7练习小例子(六)

        6):题目:斐波那契数列.     程序分析:斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……. ...

  7. 【转】Django添加静态文件设置

    STATIC_URL = '/statics/'STATIC_ROOT= os.path.join(BASE_DIR, 'statics')STATICFILES_DIRS = ( os.path.j ...

  8. AWS安装CDH5.3-CentOS6.4

    1.下载CM启动文件 [root@ip-172-31-23-107 ec2-user]# wget http://archive.cloudera.com/cm5/installer/latest/c ...

  9. django生产环境中部署

    https://www.cnblogs.com/chenice/p/6921727.html 本节内容 uwsgi 介绍 uwsgi安装使用 nginx安装配置 django with nginx 如 ...

  10. 读取Excel错误,未在本地计算机上注册 oledb.4.0

          以前写的一个读取Excel的程序,现在在另外一台机器上运行,竟然报错说"未在本地计算机上注册 oledb.4.0"       最后才知道,原来是因为现在运行的那台电脑 ...